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The tenth edition of Sleisenger and Fordtran’s Gastrointestinal 
and Liver Disease: Pathophysiology/Diagnosis/Management con-
tinues as the benchmark textbook of gastroenterology and 
hepatology. It is authoritative, comprehensive, and, although 
encyclopedic in its coverage, very readable. The editors have 
done an excellent job ensuring that the organization of chap-
ters is uniform. Thus, chapters have sections on epidemiology, 
etiology, pathology, pathophysiology, clinical features, diag-
nosis, differential diagnosis, treatment, and prognosis. This 
uniform format allows readers to search easily for information 
under different subheadings to find answers to their ques-
tions. As noted in the Preface, the content of the book has 
changed dramatically in the 42 years since the first edition was 
published in 1973. Whereas the first edition had 115 chapters 
and the tenth edition has 132, the additional 17 chapters belie 
the masterly job the contributors and editors have done in 
preserving references not only to classic articles but also to  
the important new advances that have occurred between  
publications of successive editions. This newer material also 
includes references that have been updated to include articles 

published into 2014. As also noted in the Preface, some of  
the new chapters include up-to-date discussions of enteric 
microbiota, probiotics and fecal transplantation, and factitious 
gastrointestinal diseases. An outstanding feature of the text-
book is the clarity and detail of the tables and the high quality 
of the photomicrographs.

The tenth edition of “Sleisenger and Fordtran” will con-
tinue to be a premier textbook, as was the case with its prede-
cessors, and will be especially useful to medical residents, 
gastroenterology fellows, and gastroenterologists. Finally, I 
can personally attest to the remarkable advances that have 
been made, as I was author of the chapter on eosinophilic 
gastroenteritis in the second edition of the textbook, and 
reading the same chapter in the tenth edition underscores the 
important advances that have been made in our understand-
ing of the molecular basis as well as the pathophysiology of 
this and related disorders.

Norton J. Greenberger, MD
Boston, Massachusetts

FOREWORD
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The tenth edition of Sleisenger and Fordtran’s Gastrointestinal 
and Liver Disease: Pathophysiology/Diagnosis/Management is 
among a select group of textbooks that have been valuable to 
readers over a long time span. Work by its founding editors, 
Marvin Sleisenger and John S. Fordtran, began more than four 
decades ago and culminated in the publication of the first 
edition, Gastrointestinal Disease, in 1973. Much has happened 
in the field of gastroenterology since then, and each edition of 
the text has methodically incorporated these exciting advances 
into its pages. Advances have included clearer understanding 
of the basic mechanisms of health and disease at a cellular, 
subcellular, genetic, and molecular level; a much clearer com-
prehension of the pathophysiology of GI and liver diseases; 
the introduction of numerous diagnostic tests and procedures 
(many of which displaced now outmoded tests and proce-
dures); combining diagnostic with therapeutic endoscopy; 
developing many novel pharmaceutical agents and drug 
classes for conditions that previously had no such treatments; 
applying laparoscopic surgery in many common GI disorders; 
and so much more.

Over its 42-year lifespan, the textbook has had six editors: 
Marvin H. Sleisenger and John S. Fordtran (founding editors), 
as well as Mark Feldman, Bruce F. Scharschmidt, Lawrence S. 
Friedman, and Lawrence J. Brandt. These editors have had the 
good fortune to engage hundreds of superb author-contributors 
from around the globe who generously shared their knowl-
edge and expertise with readers of the book. The editors  
also have had the luxury of stalwart support from a highly 
competent and professional publishing company, Elsevier, 
throughout the life of the book.

When the first edition of Gastrointestinal Disease was pub-
lished in 1973, it was quite different from this, the tenth 
edition. The first edition was printed in a single volume of less 
than 1600 pages, with well over 200 of these pages devoted to 
a single entity—peptic ulcer disease. There were 115 chapters 
in the first edition, compared with 132 chapters in the tenth 
edition. Besides its two founding editors, the first edition had 
55 contributors, compared with 217 contributors in the tenth 
edition. The first edition was written almost entirely by 
authors based in the United States, whereas authors from 15 
countries have contributed to the pages of the tenth edition. 
The vast majority of chapters in the first edition were written 
by a single author, whereas most chapters now have two 
authors. And perhaps most important, there was no coverage 
of liver diseases in the first edition, or even in the four subse-
quent editions, until the sixth edition—renamed Gastrointesti-
nal and Liver Disease: Pathophysiology/Diagnosis/Management—
was published in 1998. In 2007, the British Medical Association 
awarded the eighth edition of the book its First Prize in the 
field of gastroenterology.

The first edition was available to readers in print format 
only, and color was used sparingly. As time went on, the book 
became available in CD-ROM and then online via a secure 
website. Enhanced use of color allowed improved depictions 
of endoscopic images and histopathology. Today the contents 
of the tenth edition are available on handheld devices such as 
smartphones, iPads, and Kindles. The online version of the 

tenth edition also incorporates dozens of video clips that  
illustrate diagnostic and therapeutic approaches in the field, 
with narrative descriptions of the procedures. The authors are 
greatly appreciative of Gregory G. Ginsberg, Christopher J. 
Gostout, Michael L. Kochman, Ian D. Norton, and the team at 
Elsevier for allowing our readers access to these valuable edu-
cational videos.

Fortunately, with the help of our distinguished contribu-
tors, the content of the textbook remains unparalleled. Com-
paring the contents of the first with the tenth editions, one can 
appreciate the striking advances in the field. Many conditions 
that now constitute the core of gastroenterology practice were 
not even known to exist in 1973. Furthermore, comparing the 
hepatology section in the sixth edition (1998) with that in the 
current edition is a striking tribute to the discoveries that have 
improved the diagnosis and therapy of liver disease, particu-
larly with respect to the panorama of drugs to treat chronic 
viral hepatitis.

The tenth edition includes three notable chapters not 
included in earlier editions. An entire chapter, authored by 
Fergus Shanahan, has been devoted to Enteric Microbiota and 
another, authored by Christina Surawicz and Lawrence J. 
Brandt, to Probiotics and Fecal Microbiota Transplantations. 
These additions reflect our increasing knowledge about the 
bowel flora and our emerging understanding of the role of 
intestinal microbiota in the pathogenesis and treatment of a 
variety of GI (and other) diseases, most notably Clostridium 
difficile colitis. The editors are also delighted to welcome 
back John S. Fordtran who, along with Marc D. Feldman,  
has written a scholarly chapter on Factitious Gastrointestinal 
Disease, a group of disorders that can be most challenging for 
clinicians to diagnose and treat. Additional changes since the 
ninth edition are expansions of the chapter on Surgical Treat-
ment of Obesity to include endoscopic treatment, and the 
chapter on Complications of Gastrointestinal Endoscopy to 
include preparation for endoscopy; combination of the chap-
ters on Peptic Ulcer Disease and Treatment of Peptic Ulcer 
Disease into a single chapter; a new chapter on Overview of 
Cirrhosis; separation of the chapter on Hepatitis B and D into 
two chapters; and separation of the chapters on Digestion and 
Absorption of Nutrients and Vitamins into one on Digestion 
and Absorption of Macronutrients and one on Digestion and 
Absorption of Micronutrients. We are delighted to welcome 
many new authors, as well as returning authors, to the tenth 
edition.

Finally, the editors gratefully acknowledge the capable 
and spirited roles of Kate Dimock, Suzanne Toppy, Deidre 
(Dee) Simpson, and Cindy Thoms at Elsevier for facilitating 
the publication of the tenth edition. Without their support and 
vision, the editors would have fallen short of the high stan-
dards that were set by the founding editors and to which we 
remain committed.

Mark Feldman, MD
Lawrence S. Friedman, MD

Lawrence J. Brandt, MD
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Neoplasia in the GI tract remains one of the most frequent 
diseases gastroenterologists encounter. Advances in our 
understanding of the cellular and molecular basis of GI  
neoplasia have provided a foundation for the development  
of novel preventive, diagnostic, and therapeutic approaches. 
Although some features of carcinogenesis are tissue site–
specific, many mechanisms are universal to all sites through-
out the GI tract. This chapter reviews mechanisms of normal 
cell growth and the fundamental cellular and molecular  
alterations that facilitate malignant transformation. The  
basic concepts discussed in this chapter provide the frame-
work for discussion of specific GI neoplasms in later 
chapters.

MECHANISMS OF NORMAL CELL 
HOMEOSTASIS

Cellular Proliferation
Neoplasia results from the disruption of an intricate network 
of homeostatic mechanisms regulating cell cycle progression, 
differentiation, senescence, and programmed cell death. Pro-
liferation occurs as cells traverse the cell cycle (Fig. 1-1). In 
preparation for cell division, there is a period of biosynthetic 
activity called the G1 phase that is typically associated with an 
increase of cell size. This phase is followed by precise duplica-
tion of the genome, designated the S phase. After an interven-
ing gap period designated the G2 phase, mitosis occurs in the 
M phase.

The commitment to proceed to DNA replication occurs 
during the G1 phase at the G1/S checkpoint or restriction (R) 

point. Cells may exit this cycle of active proliferation before 
reaching the R point and enter a quiescent phase, G0. Cells can 
subsequently re-enter the cell cycle from the G0 state (see Fig. 
1-1). Another checkpoint exists at the boundary between the 
G2 and M phases. The G2/M checkpoint ensures that mitosis 
does not proceed prior to the repair of any damaged DNA 
after genome replication. Impaired function of these check-
points is frequently observed in cancers.

Regulation of cell cycle progression appears to be achieved 
principally by cyclins and cyclin-dependent kinase activity at 
the G1/S and G2/M checkpoints. Cyclins A and B are predomi-
nantly expressed during the S and G2 phases, respectively (see 
Fig. 1-1). In contrast, cyclins D and E are most active during 
the G1 phase.1 Overexpression of cyclin D1 in fibroblasts 
results in more rapid entry of cells into the S phase. Cyclin D1 
is frequently overexpressed in a number of GI and non-GI 
malignancies.2

Each cyclin forms a complex with a cyclin-dependent 
kinase (CDK) in a cell cycle–dependent fashion. Cyclins func-
tion as catalysts for CDK activity (see Fig. 1-1). The cyclin-
CDK complexes regulate cell cycle progression through 
phosphorylation of key target proteins, including the retino-
blastoma gene product (pRb) as well as the Rb family members 
p130 and p107.3 The final result is progression out of G1 into 
the S phase of the cell cycle.

The cell cycle is also regulated by multiple CDK inhibitors; 
p21CIP1/WAF1 and p27KIP1 are inhibitors of cyclin E/CDK2. 
Originally discovered to be part of the complex containing  
cyclin D1 and CDK4/6, p21CIP1/WAF1 is transcriptionally acti-
vated by several tumor suppressor genes, most notably TP53.4 
Another CDK inhibitor, p16INK4A, specifically inhibits CDK4 
and CDK6 and is part of a larger family of related inhibitors 
that includes p14, p15, and p185; p16INK4A is frequently 
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inactivated in most GI cancers, a finding consistent with its 
function as a tumor suppressor gene.6,7 It is known that p16INK4A 
disrupts the complex of cyclin D1 and CDK4/6, thereby 
freeing p21CIP1/WAF1 and p27KIP1 to inhibit the activity of cyclin 
E/CDK2.8 In addition, p16INK4A expression results in increased 
stability of the tumor suppressor p53.9

Apoptosis
Apoptosis (programmed cell death) is an important mecha-
nism that counterbalances cell proliferation, and escape from 
normal apoptotic mechanisms plays a critical role in oncogen-
esis. Apoptosis is characterized by distinctive features that 
include chromatin compaction, condensation of cytoplasm, 

and mild convolution of the nucleus and cytoplasm. These 
changes are followed by nuclear fragmentation and marked 
convolution of the cell surface. Eventually, membrane-bound 
apoptotic bodies that represent the cellular residue are pro-
duced and phagocytosed.

Apoptosis may be triggered by internal or external stimuli. 
Apoptosis routinely occurs during normal development to 
facilitate tissue patterning. Internal stimuli of apoptosis may 
include nutrient deprivation, hypoxia, DNA damage, or other 
stressors. Ultimately, these internal apoptotic signals converge 
to increase permeability of the mitochondrial membrane and 
collapse the electrical gradient required for aerobic respiration 
(Fig. 1-2). Small mitochondria-derived activators of caspases 
(SMACs) and cytochrome c are released into the cytoplasm. 
SMACs and the so-called apoptosome complex (cytochrome 
c, caspase 9, and Apaf1) then activate downstream caspases, 
such as caspase 3, precipitating cell death. Caspases are intra-
cellular cysteine proteases and are key mediators of pro-
grammed cell death in mammalian cells.

The Bcl-2 family of proteins has been shown to modulate 
the activity of mitochondrial permeability pores. Bax and Bak 
help form the pore, while Bcl-2, Bcl-xL, and Mcl-1 inhibit pore 
formation. The stoichiometric ratio between pro-apoptotic and 
anti-apoptotic members of the Bcl-2 family can determine the 
balance between cell survival and cell death.10 In neoplasia, 
this balance is skewed toward anti-apoptotic factors.

Apoptosis may also be stimulated by external signals.  
Activation of the TNF receptors, TNFR1 and TNFR2, by TNF 
cytokines results in activation of caspases. Activation of Fas 
receptor by the Fas ligand also results in the death-induced 
signaling complex that activates caspases. In addition to these 
well-characterized pathways, toxins, chemical signals, and 
pathogens may trigger apoptosis (see Fig. 1-2).

Senescence
Senescence is the process by which cells permanently lose 
their ability to divide. Senescence may occur in response to 
the stress induced by activation of oncogenes, DNA damage, 
or after a fixed number of cellular divisions (replicative senes-
cence). These processes limit dysregulated or excessive prolif-
eration. However, these mechanisms also contribute to aging 
and depletion of stem cells.11 During carcinogenesis, these 
tumor-suppressive mechanisms are bypassed or lost.

When grown in vitro, most primary cells have a limited 
replicative potential and eventually undergo replicative senes-
cence.12 Telomeres are repetitive DNA sequences at the ends 
of all chromosomes that regulate chromosomal stability. Telo-
meres shorten with each cell division, and when they have 
been reduced to a certain critical length, senescence typically 
occurs through activation of DNA damage signaling. Cancer 
cells are able to maintain their telomere length despite multi-
ple cell divisions through reactivation of telomerase enzyme 
activity, which adds additional telomeres to the end of chro-
mosomes.13 Aberrant DNA damage signaling in cancers may 
result in chromosomal fusions and aneuploidy when telo-
meres are exhausted.

Signaling Pathways That Regulate Cellular Growth
Cellular proliferation is achieved through transition of cells 
from G0 arrest into the active cell cycle (see Fig. 1-1). Although 
progression through the cell cycle is controlled by the regula-
tory mechanisms just described, overall proliferation is also 
modulated by external stimuli. Growth factors that bind to 
specific transmembrane receptors on the cell surface may  
be especially important. The cytoplasmic tails of these trans-
membrane receptor proteins activate intracellular signaling 

FIGURE 1-1. Regulation of the cell cycle by cyclins (cycs), cyclin-
dependent kinases (cdks), and cdk inhibitors. In the normal cell 
cycle, DNA synthesis (in which chromosomal DNA is duplicated) 
occurs in the S phase, whereas mitosis (in which nuclei first divide 
to form a pair of new nuclei, followed by actual cellular division 
to form a pair of daughter cells) takes place in the M phase. The 
S and M phases are separated by 2 gap phases, the G1 phase 
after mitosis and before DNA synthesis, and the G2 phase follow-
ing the S phase. During these gap phases, the cell is synthesizing 
proteins and metabolites, increasing its mass, and preparing for 
the S phase and M phase. Cell cycle progression is regulated 
primarily at 2 points, the G2/M and G1/S checkpoints, through the 
coordinated activities of cyclins and CDKs, which in turn are 
negatively regulated by CDK inhibitors (INK4 and CIP/KIP fami-
lies). The mid-G1 phase is characterized by the interaction 
between cyclin D1 and cdk4/6. This complex hyperphosphory-
lates the retinoblastoma protein (pRb) and its family members 
(e.g., p130). Another important complex at the G1/S boundary is 
that of cdk2 and cyclin E (cyc E). The result is to release transcrip-
tion factors such as E2F that are complexed with pRb. In turn, 
E2F binds to and activates the promoters of genes important in 
DNA synthesis. 
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attenuation of their own activity to effect an intramolecular 
feedback regulatory mechanism. The receptors for many 
peptide growth factors, including EGF, belong to this  
receptor class.

Other receptors on the cell surface possess kinase activity 
directed toward serine or threonine residues rather than  
tyrosine. These receptors also phosphorylate a variety of cel-
lular proteins, leading to a cascade of biological responses. 
Multiple sites of serine and threonine phosphorylation are 
present on many growth factor receptors, including the tyro-
sine kinase receptors, suggesting the existence of significant 
interactions among various receptors present on a single cell.14 
The transforming growth factor (TGF)-β receptor complex is 
one important example of a serine-threonine kinase-containing 
transmembrane receptor.

Many receptors are members of the so-called 7-membrane–
spanning receptor family. These receptors are coupled to 
guanine nucleotide binding proteins and designated G pro-
teins. G proteins undergo a conformational change that is 

cascades after ligand binding. In addition to peptide growth 
factors, extracellular matrix and cell-cell adhesion molecules 
(i.e., integrins, cadherins, selectins, proteoglycans) can have a 
significant impact on cell proliferation. Alterations in cell-
matrix or cell-cell interactions are particularly important in 
contributing to the invasive phenotype of malignant cells.

Interaction of ligands with their receptors at the cell surface 
induces intracellular signals that alter gene transcription and 
protein expression. Three important receptor subtypes appear 
to initiate cellular signaling through ligand-receptor interac-
tion at the cell surface: (1) tyrosine kinases, (2) serine and 
threonine kinases, and (3) G protein–coupled receptors.

The receptors for many peptide growth factors contain 
intrinsic tyrosine kinase activity within their intracellular tail. 
After ligand binding, tyrosine kinase activity is stimulated, 
leading to phosphorylation of tyrosine residues in target pro-
teins within the cell. Most receptors also autophosphorylate 
tyrosine residues present in the receptors themselves to 
magnify signaling and, in some cases, this also causes 

FIGURE 1-2. Apoptosis (programmed cell death) counterbalances cellular proliferation to regulate overall tissue growth. A complex 
interplay of proapoptotic and antiapoptotic molecules results in downstream activation of caspases that mediate cell death. Some of 
these signals are initiated through environmental insults that activate the TP53 tumor suppressor gene, and some are initiated through 
death receptors, including TNF-R1, TNF-R2, and Fas. In addition, there is an interplay between proapoptotic (Bax, Bak) and antiapop-
totic (BCL-2, BCL-XL) molecules. Both pathways converge on the mitochondria, resulting in release of cytochrome c and formation 
of the apoptosome complex (APAF1, caspase 9, and cytochrome c). This leads to activation of multiple caspases, DNA damage, and 
ultimately to cell death. BID, bcl-2 interacting domain; TNF-R1, tumor necrosis factor receptor 1; TNF-R2, tumor necrosis factor  
receptor 2. 
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that bind to cell surface receptors of the Frizzled family. Inhibi-
tion of the Wnt signal in mice can be achieved by deletion  
of Tcf-4 or overexpression of the Wnt inhibitor Dickkopf1, 
which results in dramatic hypoproliferation of the intestinal 
epithelium.18,19 Tissue homeostasis is also maintained by 
growth-inhibiting signals that counterbalance proliferative 
signals. TGF-β is a potent growth-inhibiting factor that medi-
ates arrest of the cell cycle at the G1 phase. TGF-β not only 
induces transcription of the cell cycle inhibitors p15INK4B and 
p21CIP1/WAF1, it also enhances the inhibitory activity of p27KIP1 
on the cyclin E/CDK2 complex (see Fig. 1-1).20 These effects 
of TGF-β are mediated intracellularly through the Smad family 
of proteins.

INTESTINAL TUMOR DEVELOPMENT

Multistep Formation
Multiple sequential genetic alterations are required for the 
transformation of normal intestinal epithelium to neoplasia. 
This multistep nature of tumorigenesis is most directly illus-
trated by the changes that accrue in the development of colonic 
neoplasia (see Chapter 127). The accumulation of genetic and 
epigenetic alterations parallels the progression from normal 

dependent on the presence of guanosine phosphates.15 
Activation of G proteins can trigger a variety of intracellular 
signals, including stimulation of phospholipase C and the  
generation of phosphoinositides (most importantly, inositol 
1,4,5-triphosphate) and diacylglycerol through hydrolysis of 
membrane phospholipids, as well as modulation of the second 
messengers cyclic adenosine monophosphate (cAMP) and 
guanosine monophosphate (GMP).16 Somatostatin receptors 
exemplify a G protein–coupled receptor prevalent in the  
GI tract.

Binding of growth factors and cytokines to cell surface 
receptors typically produces alterations in a variety of cellular 
functions that influence growth. These functions include ion 
transport, nutrient uptake, and protein synthesis. However, 
the ligand-receptor interaction must ultimately modify one or 
more of the homeostatic mechanisms discussed to affect cel-
lular proliferation.

The Wnt pathway is one important example of a signaling 
pathway that regulates a diverse number of homeostatic 
mechanisms to control proliferation of intestinal epithelial 
cells (Fig. 1-3). Evolutionarily conserved among several 
species, Wnt signaling, as a rule, ultimately results in accumu-
lation of β-catenin in the nucleus, where it binds with the 
transcription factor Tcf-4 to activate a set of target genes.17 In 
normal cells, this signal is initiated by secreted Wnt ligands 

FIGURE 1-3. The Wnt signaling pathway is an important regulator of intestinal epithelial cell proliferation and tumorigenesis. In the absence 
of a Wnt signal (left top), cytosolic β-catenin forms a cytoplasmic complex with APC, Axin, and glycogen synthase kinase-3β (GSK-3β). 
This β-catenin destruction complex phosphorylates β-catenin and targets it for degradation via the ubiquitin-mediated proteasomal 
pathway. In the presence of an active Wnt signal (right top), β-catenin is stabilized, and excess cytoplasmic β-catenin is translocated 
to the nucleus, where it interacts with the Tcf-4 transcription factor to regulate the expression of many key target genes. APC, adeno-
matous polyposis coli; P, phosphate group; VEGF, vascular endothelial growth factor. 
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methylator phenotype (CIMP).21,22 Chromosomal instability re
sults in tumor cells that display frequent aneuploidy, large 
chromosomal deletions, and chromosomal duplications. In 
contrast, tumors that display microsatellite instability are 
often diploid or near-diploid on a chromosomal level but 
harbor frequent alterations in smaller tracts of microsatellite 
DNA (see later discussion on DNA repair). CIMP-high tumors 
have excessive gene promoter CpG-island methylation, which 
results in gene silencing. Thus, there are at least 3 distinct 
routes to the formation of a colorectal cancer, depending on 
the nature of the underlying genetic or epigenetic instability 
(Fig. 1-4). It is important to note that involvement by these 
pathways is not mutually exclusive.

epithelium through adenomatous polyps to malignant neopla-
sia. Studies on the molecular pathogenesis of colon cancer 
have served as a paradigm for the elucidation of genetic altera-
tions in other GI cancers, including gastric and pancreatic 
cancer.

A genetically unstable environment is necessary for the 
development of the multiple alterations that ultimately result 
in cancer. Genomic instability is observed in almost all cancers, 
regardless of organ site. Instability of the genome may result 
from several mechanisms. In colon cancer, there are now  
3 well-recognized forms of genetic/epigenetic instability  
that promote carcinogenesis, and they have been termed  
chromosomal instability, microsatellite instability, and CpG island 

FIGURE 1-4. Multistep models of colorectal cancer based on underlying genetic instability. As shown on the left, there are 3 major 
pathways: chromosomal instability (top pathway), microsatellite instability (middle pathway), and serrated (lower pathway). The progres-
sion from normal colonic epithelium to carcinoma is associated with the acquisition of several genetic and epigenetic alterations. In 
the chromosomal instability pathway (top pathway), these alterations include the concomitant activation of oncogenes (e.g., K-ras) 
through a point mutation and inactivation of tumor suppressor genes (e.g., APC, TP53) through a point mutation or deletion. An increas-
ing aggregate number of mutations can be correlated with progression from early benign adenoma to cancer, as reflected by analysis 
of polyps by size. In the microsatellite instability model (middle pathway), mutations in DNA mismatch repair genes create a mutator 
phenotype in which mutations accumulate in specific target genes (see section on DNA mismatch repair). Tumors develop much more 
rapidly through this pathway than through the chromosomal instability pathway (horizontal arrows). In the serrated pathway (lower 
pathway), the initiating event is hypothesized to be a BRAF or KRAS activating mutation that results in a serrated adenoma. Serrated 
adenomas may undergo extensive promoter hypermethylation (CpG island methylator phenotype [CIMP]) to become sporadic micro-
satellite unstable cancers (MSI-H) through silencing of genes encoding for MLH1 and p16. Alternatively, serrated adenomas can 
undergo a pathway similar to that of chromosomal instability to become microsatellite stable tumors. 
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genes that produce a structurally altered protein that exhibits 
inappropriately high activity. For example, several genes that 
encode tyrosine kinase–containing growth factor receptors 
become oncogenes after a mutation results in unregulated 
tyrosine kinase activity that is no longer dependent on the 
presence of the appropriate ligand. The normal cellular genes 
from which the oncogenes derive are designated proto-
oncogenes. Most of these genes are widely expressed in many 
different types of tumor cells.

Several mechanisms can lead to oncogene activation. These 
include gene transduction or insertion, point mutation, gene 
rearrangement, and gene amplification. Gene transduction 
and insertion generally result from retroviral infection. Point 
mutations result in constitutively active oncogene products. 
Gene rearrangements can result in oncogenic fusion proteins, 
and gene amplifications lead to uncontrolled overexpression 
of a normal gene product.

The proteins encoded by oncogenes comprise at least  
4 distinct groups—peptide growth factors that may be  
secreted into the extracellular milieu, protein kinases, signal-
transducing proteins associated with the inner cell membrane 
surface (membrane-associated G proteins), and transcriptional 
regulatory proteins located in the nucleus.

Peptide Growth Factor Oncogenes
The transforming effects of enhanced expression of a variety 
of growth factors have been demonstrated both in vitro and 
in vivo. Several growth factor–related proteins encoded by 
oncogenes have now been recognized, including the family of 
Wnt proteins and Sis, which encodes the β chain of platelet-
derived growth factor. Cancer cells may engage in autocrine 
signaling to promote their growth, or coax the adjacent stroma 
to hypersecrete such growth-stimulating factors.

Protein Kinase–Related Oncogenes
The largest family of oncogenes encodes proteins with protein 
kinase activity. These oncogenes encompass the full variety  
of protein kinases, including receptor/nonreceptor tyrosine 
kinases and cytoplasmic serine/threonine kinases. Many 
members of this large oncogene group are expressed by neo-
plasms of the GI tract, and these include the receptor tyrosine 
kinases of the EGF receptor family (ERBB1-4) and the Src 
nonreceptor tyrosine kinase that associates with the inner 
surface of the plasma membrane.

Signal Transduction–Related Oncogenes  
(Membrane-Associated G Proteins)
Intermediate steps that effectively translate ligand-receptor 
binding to an intracellular signal are essential in mediating 
functional responses of the cell. Mutations in genes that encode 
key proteins that participate in signal transduction can also 
lead to cellular transformation.

G proteins regulate signaling of the large family of G 
protein–coupled receptors (GPCRs) through the exchange of 
guanosine triphosphate (GTP) with guanosine diphosphate 
(GDP). Altered ras genes, a family of proteins related to the G 
proteins, are among the most commonly detected oncogenes 
in GI tract cancers. The ras family contains 3 genes: H-ras, 
K-ras, and N-ras. Point mutations that result in amino acid 
substitutions at critical hot spot positions convert the normal 
gene into an oncogene.

To date, almost all ras mutations in GI malignancies occur 
in the K-ras oncogene. The highest mutation frequency is 
found in tumors of the exocrine pancreas (>90%).27 Ras genes 
activated through point mutation have been identified in 

Clonal Expansion
Clonal expansion is essential to tumor development.23 Whereas 
germline mutations may lead to altered expression of a gene 
in all cells in a tissue, subsequent additional somatic mutations 
generally occur only in a small subpopulation of cells. Clonal 
expansion of these mutated cells occurs if a specific gene 
mutation results in a survival advantage for the cells. A second 
round of clonal expansion occurs when a cell within this popu-
lation sustains still another genetic alteration that further 
enhances its growth properties. This iterative process of selec-
tion, with accumulating genetic alterations, results in cellular 
transformation and malignancy. Once frank malignancy has 
developed, the catalog of mutations harbored may vary 
between cancer cells. Referred to as tumor heterogeneity, this 
ongoing process may give certain cells selection advantages.24 
Metastasis may be facilitated by the evolution of a subset of 
tumor cells that acquire the capability of traversing the circula-
tory system and thriving in a new environment.

Cancer Stem Cells
These observations of tumor heterogeneity have led to the 
cancer stem cell hypothesis, which asserts that there exists a 
subset of tumor cells that have stem cell–like properties. 
Cancer stem cells (CSCs) are believed to be the tumor-initiating 
cells from which clonal expansion occurs. Moreover, it is 
hypothesized that eradication of these cells is a key therapeu-
tic goal because failure to do so may result in relapse of 
disease. Within this CSC hypothesis, there are 2 models.25 The 
first is a hierarchical model in which CSCs may serve as pro-
genitors of cancer cells with limited reproductive potential. 
The second stochastic model posits that each cancer cell has 
the same potential to be a CSC, but this determination is sto-
chastically based on internal factors in addition to external 
environmental cues. Analysis of putative CSCs demonstrate 
transcriptional programs and markers shared with normal 
intestinal stem cells. Markers such as Lgr5 and EphB2 have 
been used to identify and purify colon CSCs.26

NEOPLASIA-ASSOCIATED GENES
The genes that collectively play an important role in oncogen-
esis generally lead to disruption of the orderly mechanisms of 
normal cell proliferation. Since normal cell proliferation 
appears to depend on a wide variety of genes, it is not surpris-
ing that alterations in the expression of a diverse set of genes 
confer part or all of the phenotypic features of transformation. 
Despite this diversity, all these genes that become altered 
appear to belong to 1 of 2 distinct groups: (1) oncogenes, 
which actively confer a growth-promoting property, or (2) 
tumor suppressor genes, the products of which normally 
restrain growth or proliferation. An important category within 
tumor suppressor genes includes DNA repair genes, which 
prevent accumulation of new mutations. Activation of onco-
genes or inactivation of tumor suppressor genes contributes 
to malignant transformation. Transcriptionally active sites of 
the genome that do not encode for proteins also play a signifi-
cant role in regulation of gene expression and carcinogenesis. 
These noncoding RNAs may harbor oncogenic and tumor 
suppressive functions as well.

Oncogenes
Typically, oncogenes are genes that encode a normal cellular 
protein expressed at inappropriately high levels or mutated 
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play a role in the development of the same tumor type in the 
general population (sporadic cancer), but 2 independent 
somatic mutations of each of the 2 alleles would be required. 
However, this combination of events should be uncommon 
and would explain the lower frequency and later age of diag-
nosis of similar tumors in the general population. Comings 
was the first to suggest that the relevant gene in a familial 
cancer syndrome might encode a tumor-suppressing gene 
product.34 Although this 2-hit model has been generally 

approximately 50% of colonic cancers as well as a subset of 
serrated tumors (see Fig. 1-4).28

Most oncogenic mutations in ras cause biochemical changes 
that maintain it in the active, GTP-bound state by reducing 
guanosine triphosphatase (GTPase) activity or by destabiliz-
ing the inactive GDP-bound form. However, several ras 
mutants retain significant GTPase activity; therefore, other 
mechanisms that convert ras to a transforming protein may be 
involved.29

A functional consequence of ras activation is phosphoryla-
tion of key serine/threonine kinases. One important down-
stream signaling target of ras is B-raf. In colon cancers without 
an identifiable K-ras mutation, 20% possess an activating B-raf 
mutation,30 consistent with the concept that activation of an 
oncogenic pathway can be achieved through an alteration in 
any of several sequential components of a particular pathway.

Nuclear Oncogenes
Many cellular oncogenes encode proteins that localize to the 
nucleus. In essence, these nuclear oncogene products are the 
final mediators of signal transduction pathways that are also 
affected by cytoplasmic and plasma membrane-bound oncop-
roteins, because they act as transcription factors that regulate 
expression of certain genes that enhance cellular proliferation 
and suppress normal differentiation.

The role of nuclear oncogenes is illustrated by the myc 
family. The c-Myc protein product is involved in critical cel-
lular functions like proliferation, differentiation, apoptosis, 
transformation, and transcriptional activation of key genes.31 
Frequently, c-Myc is overexpressed or amplified in many GI 
cancers. c-Myc has been found to be a transcriptional target of 
the β-catenin/TCF-4 complex in colorectal cancers (see Fig. 
1-3), which may explain the overexpression of c-Myc observed 
in this cancer type.32

Tumor Suppressor Genes
The products of tumor suppressor genes prevent acquisition 
of the transformed phenotype in vitro and have similar func-
tional properties in vivo. Mutations that disrupt the biological 
function of these genes are associated with all GI cancers. 
Germline mutations of this class of gene underlie most of the 
known inherited cancer syndromes in which a specific gene 
has been implicated. A number of these genes and their prod-
ucts have been identified and characterized (Table 1-1).

Initial recognition of the existence of tumor suppressor 
genes was derived from linkage analyses of cancer-prone 
families. In the GI tract, hereditary colon cancer, gastric cancer, 
and pancreatic cancer syndromes are the best described and 
are discussed elsewhere in this text. A number of features are 
common to GI cancer syndromes with Mendelian patterns of 
inheritance. Most importantly, the marked increase in risk for 
a particular tumor is found in the absence of other predispos-
ing environmental factors. In addition, multiple primary 
tumors often develop within the target tissue, and tumors in 
these affected members typically arise at a younger age than 
they do in the general population. Finally, affected individuals 
are sometimes at risk for tumors outside the GI tract.

These observations led Knudson to hypothesize that 
tumors in familial cancer syndromes might derive from inde-
pendent mutations in the 2 alleles of a specific tumor suppres-
sor gene (Fig. 1-5). Specifically, he proposed that the first 
mutation was present in 1 copy of the gene inherited in the 
germline and therefore present in all cells in affected family 
members.33 A somatic mutation of the remaining normal allele 
of the tumor suppressor gene that might occur in any cell 
would then lead to tumor development. The same gene might 

FIGURE 1-5. Knudson’s 2-hit hypothesis. In an inherited cancer 
syndrome, 1 chromosome has an inactive tumor suppressor gene 
locus because of a germline mutation. The counterpart tumor 
suppressor gene on the remaining paired chromosome is subse-
quently inactivated by a somatic mutation, leading to tumor for-
mation. In contrast, in a sporadic cancer, the 2 alleles of the tumor 
suppressor gene become inactivated through 2 independent 
somatic mutations, an unlikely event within a single cell. 
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TABLE 1-1 Mutations Associated with Hereditary 
Gastrointestinal Cancer Syndromes

Disorder Gene(s) Mutated

FAP, AFAP APC

Lynch syndrome (HNPCC) MSH2, MLH1, MSH6, PMS2, 
EpCAM

MUTYH polyposis MUTYH

Peutz-Jeghers syndrome LKB1/STK11

Cowden’s disease PTEN

Juvenile polyposis SMAD4, BMPR1A

Hereditary diffuse gastric 
cancer

CDH1

Hereditary pancreatic 
cancer

ATM, BRCA1, BRCA2, PALB2, 
PALLD, CDKN2A, PRSS1, 
SPINK1, PRSS2, CTRC, CFTR

MEN1 Menin

AFAP, attenuated FAP; APC, adenomatous polyposis coli; FAP, familial 
adenomatous polyposis; HNPCC, hereditary nonpolyposis colorectal cancer; 
MEN1, multiple endocrine neoplasia, type 1; MUTYH, mutY homolog.
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The APC gene comprises 15 exons and encodes a predicted 
protein of 2843 amino acids, or approximately 310 kd. Most 
germline and somatic APC gene mutations result in a prema-
ture stop codon and therefore a truncated APC protein product. 
Mutations occurring in the APC amino terminal are associated 
with a rare variant of FAP, attenuated familial adenomatous 
polyposis (AFAP).42 APC mutations result in functional 
changes in key protein-protein interactions. As discussed 
earlier, APC is a negative regulator of the Wnt signaling 
pathway (see Fig. 1-3). Mutant APC proteins are unable to 
interact with β-catenin, resulting in uncontrolled activation of 
the Wnt signaling pathway and the subsequent oncogenic 
phenotype.

TP53 Gene
Named for a 53-kd-sized gene product, p53 is a nuclear phos-
phoprotein that plays a key role in cell cycle regulation and 
apoptosis.43 The p53 protein was first detected in tumors as 
the product of a mutated gene that was mapped to chromo-
some 17p, a region found to exhibit loss of heterozygosity in 
many tumors. Point mutations in TP53 have been identified 
in as many as 50% to 70% of sporadic colon cancers (see Fig. 
1-4) but only a small subset of colonic adenomas.44 Point muta-
tions in TP53 have also been found in all cancers of the GI 
tract.43 Interestingly, aflatoxin appears to induce a mutation in 
a single hot spot codon (codon 249) of TP53 in many hepato-
cellular carcinomas.45 In addition to the TP53 point mutations 
in sporadic cancers, germline TP53 mutations have been 
observed in the Li-Fraumeni syndrome, an autosomal domi-
nant familial disorder in which breast carcinoma, soft tissue 
sarcoma, osteosarcoma, leukemia, brain tumor, and adreno-
cortical carcinoma can develop in affected persons.46

The sequence-specific transcription factor p53 is induced 
in conditions of cellular stress, such as ionizing radiation, 
growth factor withdrawal, or cytotoxic therapy (see Fig. 1-2). 
As a consequence of genotoxic damage, p53 arrests cells at the 
G1 phase to facilitate DNA repair, senescence, or trigger apop-
tosis. Factor p53 mediates some of these responses through 
induction of the p21CIP1/WAF1 inhibitor of the cell cycle or pro-
apoptotic genes, including PUMA, and c-Myc appears to play 
a role in this cell fate decision.47

SMAD4 Gene
SMAD4 is a tumor suppressor gene located on chromosome 
18q and is deleted or mutated in most pancreatic adenocarci-
nomas and a subset of colon cancers. This gene encodes 
Smad4, an essential intracellular mediator of the growth inhib-
itory effects of TGF-β. The Smad4 protein has 2 important 
domains, the mad homology domains 1 and 2 (MH1 and 
MH2), which are essential for DNA binding and for oligomer-
ization with other Smad proteins, respectively.48 Mutant 
Smad4 blocks TGF-β–induced inhibition of proliferation. 
Germline mutations in SMAD4 result in the juvenile polyposis 
syndrome (see Chapter 126).

DNA Repair Genes
Cellular mechanisms have evolved to preserve the fidelity of 
DNA. Errors can be introduced into the genome through mul-
tiple physiologic and pathologic mechanisms. These errors 
include spontaneous mismatching of nucleotides during 
normal DNA replication, oxidative damage of nucleotides, 
and complete double-strand breaks. Numerous discrete 
systems exist to repair these types of DNA damage that  
can arise from a variety of insults, including carcinogens, irra-
diation, and reactive oxygen species. One type of error that 

observed for mendelian cancer syndromes, there are excep-
tions. Some tumor suppressors may function to increase 
cancer risk when only 1 allele is mutated. These genes may be 
so critical that the reduction in gene expression by 1 mutant 
allele is sufficient to drive tumorigenesis. Also, 1 mutant allele 
may function in a dominant-negative fashion, blocking the 
effect of the intact protein encoded by the normal allele.

Tumor Suppressor Gene Inactivation
Some tumor suppressor genes were first cloned through detec-
tion of regions of gene deletion in tumor samples from cancer-
prone kindreds by DNA screening for markers scattered 
throughout the genome. These deletions targeted the second 
wild-type allele and served to pinpoint the chromosomal loca-
tion of the disease-causing gene present on the other allele. 
More recently, our knowledge of the genetic variation observed 
in tumors has greatly increased by next-generation sequencing 
technologies. By analyzing the genetic changes in tumors in 
comparison to normal mucosa, we are now aware of the types 
of genetic changes that occur in cancer cells. Single nucleotide 
variants (SNVs) refer to changes in a single base pair of the 
genetic code. While many of these mutations are silent, others 
can result in significant changes in gene expression or func-
tion. Missense mutations result in a change in the amino acid 
encoded by the codon. Nonsense mutations refer to the intro-
duction of a premature stop codon. SNVs at splice-acceptor or 
donor sites may result in exon loss or misexpression of intronic 
sequences. SNVs in the promoter or untranslated regulatory 
regions of a gene may dramatically change gene expression. 
Another type of genetic variation includes insertions or dele-
tions. Small insertion or deletion mutations may result in 
frameshift mutations within a gene. Larger-scale insertion and 
deletions are also seen. Each type of variant may result in 
inactivation of a given gene, and they represent important 
mechanisms of inactivation of 1 copy of tumor suppressor 
genes. Another mechanism of tumor suppressor gene inacti-
vation includes promoter hypermethylation. Transcriptional 
silencing can result from methylation of CpG islands in gene 
promoters; this has been demonstrated to occur in the genes 
encoding p16INK4A and E-cadherin.35 Excess CpG island meth-
ylation has been implicated as a cardinal feature in the ser-
rated pathway to colon cancer (see Fig. 1-4).

Tumor suppressor genes do not function identically in 
every tissue type. Consequently, inactivation of a particular 
tumor suppressor gene is tumorigenic only in certain tissues. 
For example, the tumor suppressor genes RB1 and VHL play 
crucial roles in retinoblastomas and renal cell cancer, respec-
tively, but are rarely mutated in GI malignancies. Three tumor 
suppressor genes shown to have a critical role in the patho-
genesis of GI malignancies, APC, TP53, and SMAD4, are 
described below.

Adenomatous Polyposis Coli Gene
Genetic linkage analysis revealed markers on chromosome 
5q21 that were tightly linked to polyp development in affected 
members of kindreds with familial adenomatous polyposis 
(FAP) and Gardner’s syndrome.36 Further work led to identi-
fication of the gene responsible for FAP, the adenomatous 
polyposis coli (APC) gene.37-39 The full spectrum of adenoma-
tous polyposis syndromes attributable to APC is discussed in 
detail in Chapter 126. Somatic mutations in APC have also 
been found in most sporadic colon polyps and cancers.40,41 
Mutations in APC are characteristically identified in the earli-
est adenomas, indicating that APC plays a critical role as the 
gatekeeper in the multistep progression from normal epithe-
lial cell to colon cancer (see Fig. 1-4).
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is an almost universal feature of all colorectal cancers. The 
latter can result from a mutation in the APC, Axin, or β-catenin 
genes, although alterations in the APC tumor suppressor gene 
are the most common. An alteration in just 1 of these compo-
nents is sufficient to activate the entire pathway. Thus, it is 
essential to consider individual genetic alterations in the 
context of the overall signaling pathway in which they 
function.

Because pathways are typically not linear, additional levels 
of complexity arise. There is frequent overlap among path-
ways, and the distinction between pathways can be somewhat 
arbitrary. For example, mutations in the K-ras oncogene result 
in activation of multiple distinct signaling pathways, includ-
ing Raf/ERK/MAPK, PI3K/Akt, and NF-κB, all of which play 
an important role in tumorigenesis (Fig. 1-6). Crosstalk 
between these effector pathways serves to modulate the cel-
lular responses further. For example, Akt, a target of PI3K, can 
phosphorylate Raf and thereby regulate signaling through the 
MAPK pathway.56 Finally, each of these signaling pathways 
regulates multiple biological processes related to tumorigen-
esis,57 including cell cycle progression, apoptosis, senescence, 
angiogenesis, and invasion.

Another pathway that plays a particularly important role 
in GI tumors is the cyclooxygenase-2 (COX-2) pathway. The 
enzyme COX-2 is a key regulator of prostaglandin synthesis 
that is induced in inflammation and neoplasia. Although no 
mutations of COX-2 have been described, overexpression of 
COX-2 in colonic adenomas and cancers is associated with 
tumor progression and angiogenesis, primarily through 
induction of prostaglandin E2 synthesis. Inhibition of COX-2 
with a variety of agents (aspirin, nonsteroidal anti-inflammatory 
drugs, or COX-2 selective inhibitors) is associated with a 
reduced risk of colorectal adenomas and cancer.58

Noncoding RNAs
Although previously referred to as “junk DNA,” a significant 
portion of the non–protein coding genome remains transcrip-
tionally active. The RNA products, termed non-coding RNAs 
(ncRNAs), consist of a broad category of active RNA mole-
cules including long noncoding RNAs (lncRNAs) and micro 

develops during replication may occur in stretches of micro-
satellite DNA, which involves regions of mononucleotide 
(e.g., poly-A) or dinucleotide (e.g., poly-CA) repeats.49 The 
DNA mismatch repair system corrects these errors. The 
enzymes bind mismatched DNA, cut the DNA strand with  
the mismatched nucleotide, unwind the DNA fragment, fill in 
the gap with the correct nucleotide, and finally reseal the 
remaining nick. The family of DNA mismatch repair genes 
includes MSH2, MSH3, MSH4, MSH5, MSH6, MLH1, MLH3, 
PMS1, and PMS2.

MLH1 and MSH2 are the 2 DNA mismatch repair genes 
that are most frequently mutated at the germline level in 
Lynch syndrome, also known as hereditary nonpolyposis colorec-
tal cancer (HNPCC).50,51 Mutations can lead to functional alter-
ations that allow strand slippage during replication. Affected 
cells are called replication error (RER) positive, in contrast to 
the RER-negative phenotype.52,53 Because microsatellite DNA 
sequences are primarily affected by this type of genetic insta-
bility, the tumor cells are said to display microsatellite instabil-
ity (MSI). Mechanistically, the absence of DNA repair does not 
directly cause cancer. Rather, the DNA repair defect creates a 
milieu that permits accumulation of mutations in a variety of 
other genes that contain microsatellite DNA sequences, such 
as the TGF-β type II receptor, IGF type II receptor, BAX, and 
E2F-4. This MSI pathway represents a novel mechanism for 
the accumulation of mutations within a tumor (see Fig. 1-4). 
It is characteristic of all Lynch-related tumors and is observed 
in approximately 15% of all sporadic colon cancers. Increasing 
evidence has emerged that these sporadic MSI tumors result 
from the serrated pathway and MLH1 promoter hypermeth-
ylation (see Fig. 1-4).

Errors can also be introduced when individual nucleotides 
are damaged by chemical factors; the base excision repair 
system corrects these types of errors. 8-Oxoguanine residues 
can result from oxidative DNA damage, and these altered 
bases will inappropriately pair with adenines, ultimately 
leading to somatic G : C→T : A mutations if uncorrected. 
MUTYH is a DNA glycosylase that participates in the repair 
of these oxidized guanine nucleotides. An autosomal recessive 
adenomatous polyposis syndrome caused by germline muta-
tions in the MUTYH repair gene has been identified.54,55 Inter-
estingly, G : C→T : A mutations in the APC gene were almost 
universally found in the polyps of patients with germline 
MUTYH mutations, indicating that there are important simi-
larities in the molecular pathogenesis of polyps in the MUTYH 
and FAP syndromes.

Oncogenic Signaling Pathways
Individual oncogenes or tumor suppressor genes do not nec-
essarily induce cellular transformation directly but typically 
function as components of larger oncogenic signaling path-
ways. Some of the pathways that are particularly relevant for 
GI tumorigenesis include the Wnt and Ras signaling path-
ways. These are pathways that regulate normal tissue homeo-
stasis but become oncogenic when the signals are transduced 
in an aberrant or amplified manner. The key features of Wnt 
signaling are illustrated in Figure 1-3. β-catenin is translocated 
from the inner plasma membrane to the cytoplasm. There, it 
forms a macromolecular complex with the APC protein Axin 
and glycogen synthase kinase-3β (GSK-3β). Phosphorylation 
of β-catenin by GSK-3β triggers its degradation. In the pres-
ence of an active Wnt signal, β-catenin is stabilized, and it 
enters the nucleus where it interacts with the transcription 
factor Tcf-4 to up-regulate a number of key target genes, 
including c-Myc, cyclin D1, and VEGF. As discussed earlier, 
Wnt signaling is essential for regulating proliferation of 
normal intestinal epithelium, and dysregulated Wnt signaling 

FIGURE 1-6. Diversity of signaling through K-ras. Oncogenic K-ras 
can activate multiple signaling pathways. The mechanisms that 
determine which pathway may be preferentially activated in a 
given cell type are not fully defined. Crosstalk between these 
pathways increases the complexity of the signaling networks. 
These effector pathways can influence cellular biological pro-
cesses including proliferation, apoptosis, differentiation, and 
motility. 
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ultimately lead to expression of abnormal genes or inappropri-
ate expression of normal genes, the products of which confer 
the malignant phenotype. Genetic mutation is the common 
denominator of agents or mechanisms that contribute to the 
development of neoplasia.

Chemical Carcinogenesis
Metabolic activation by the host is a key determinant of the 
carcinogenic potential of many compounds. The initial com-
pound, the procarcinogen, is converted by host enzymes to  
an electrophilic derivative, which then chemically modifies 
DNA. Mutations result from errors that occur during DNA 
replication as a result of distorted base pairs. Factors that  
influence the potency of any chemical carcinogen include the 
equilibrium between activation of the procarcinogen and 
deactivation or degradation of the carcinogen.65 Deactivation 
typically occurs through a conjugation reaction, usually in  
the liver.

These principles are exemplified by experimental colonic 
carcinomas that arise in rodents fed cycasin, a glucosylated 
compound present in the cycad nut. The glucose residue of 
cycasin is cleaved in the rat liver by β-glucosidase to form 
methylazoxymethanol, which is subsequently deformylated 
by enzymes in the liver and colon to give rise to methyldiazo-
nium, a carcinogen. These same metabolites are formed 
through hepatic enzymatic modification of the compound 
dimethylhydrazine and result in colon cancer in the rat.

In humans, regular tobacco use is strongly associated with 
a higher risk of multiple GI cancers, including pancreatic and 
colon cancer. Among active smokers with long-term tobacco 
use, the risk for pancreatic cancer can be elevated 2-fold. Mul-
tiple carcinogenic agents including arsenic, benzene, and eth-
ylene oxide have been identified in cigarettes, but the chemicals 
linked specifically to the development of pancreatic or colon 
cancer have not yet been defined.

Dietary Factors
Chemical mutagenesis may be especially important in the 
development of cancers within the GI tract and related organs. 
The mucosal surfaces from which most primary cancers in the 
GI tract develop are exposed to a complex mixture of dietary 
constituents that are potential carcinogens or procarcinogens. 
The ability of dietary factors to act as mutagens in humans 
was demonstrated directly in 1995. The frequency of contami-
nation of foodstuffs with aflatoxins, a fungal metabolite, paral-
lels the incidence of hepatocellular carcinoma in various areas 
of the world.66 Studies demonstrating that aflatoxins cause 
mutations in the TP53 gene in hepatocellular carcinoma 
have provided a compelling link between genes and the 
environment.66

Nitrates present in many foods appear to be additional 
dietary constituents that may act as procarcinogens in the GI 
tract. Diet-derived nitrates can be converted by bacterial action 
in a hypochlorhydric stomach to nitrites and subsequently  
to mutagenic nitrosamines.67 These events may underlie the 
documented correlation between dietary intake of foods high 
in nitrates and the incidence of gastric cancer in different 
populations.

Other dietary factors may modulate the biological potency 
of dietary procarcinogens. Variations in the relative and abso-
lute amounts of dietary fats may lead to alterations in the 
composition of the colonic microflora and their metabolic 
characteristics, resulting in modulation of the production of 
enzymes that convert dietary constituents into potentially 
mutagenic compounds. Changes in dietary fiber content  

RNAs (miRNAs) that are frequently dysregulated in cancers.59 
Initially processed into small interfering RNAs (siRNAs) by 
the protein Dicer into 20- to 25-nucleotide sequences, microR-
NAs play a critical role in transcript silencing.60 These siRNAs 
bind to complementary mRNA sequences, and this binding 
then facilitates the activity of the RNA-induced silencing 
complex to target the mRNA for cleavage and degradation. 
LncRNAs may perform diverse functions like gene silencing, 
splicing, and extension of telomeres.

Epigenetics
Epigenetics refers to changes in the genome that result in 
change in expression or phenotype without a change in the 
sequence of the DNA. Often these changes can result from 
structural alterations of the genome. One major mechanism is 
promoter CpG-island hypermethylation. The promoters of 
many genes are enriched with these CG sites (“CpG islands”). 
Methylation of the cytosine residues in these islands can result 
in silencing of the downstream gene.

Many cancers exhibit promoter hyperymethylation and 
silencing of important tumor suppressor genes. In approxi-
mately 15% to 20% of colorectal cancers, this process becomes 
a dominant feature of carcinogenesis. Characterized as CpG 
island methylator phenotype (CIMP) positive, these tumors 
have excessive levels of promoter hypermethylation of tumor 
suppressor genes. Notably, MLH1 is frequently hypermethyl-
ated, resulting in sporadic microsatellite unstable cancers. The 
mechanisms underlying this promoter hypermethylation 
remain undefined, but recent studies demonstrate a link 
between tumor metabolism and global methylation status. 
Mutations in IDH1 can induce a CIMP-high phenotype in 
glioblastomas.61

TUMOR METABOLISM
Metabolic cues and nutrient availability play a critical role in 
cell growth and homeostasis. As previously described, a  
lack of available nutrients or mitochondrial dysfunction may 
signal growth arrest or apoptosis. However, tumor cells 
exhibit abnormal metabolic profiles to facilitate their growth 
and anabolic needs. Observations in 1924 from Nobel Laure-
ate Otto Heinrich Warburg revealed that tumor cells displayed 
dramatic increases in aerobic glycolysis and diminished mito-
chondrial respiration. This hypothesis, known as the Warburg 
hypothesis, has been validated and is a hallmark feature of 
most malignancies.62 Many of the genes implicated in GI 
cancers (p53, K-Ras, PI3K, mTOR, HIF, Myc) can in fact regulate 
metabolic pathways. Moreover, germline mutations in meta-
bolic regulators (e.g., subunits of succinate dehydrogenase 
[SDH]) that are not classical oncogenes or tumor suppressor 
genes have been associated with a high risk of tumorigenesis 
(pheochromocytoma and paraganglioma).63,64 The selection 
advantage of increased glycolysis in cancer cells may include 
greater tolerance to hypoxic environments and shunting of 
metabolic byproducts to other biosynthetic pathways. These 
altered metabolic pathways are promising new targets for 
therapy.

ENVIRONMENTAL AND 
MICROENVIRONMENTAL INFLUENCES
Fundamentally, cancer is a genetic disorder. Environmental 
factors play an important role in tumorigenesis, but they  
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BIOLOGICAL FEATURES OF  
TUMOR METASTASIS
The establishment of distant metastases requires multiple pro-
cesses, many of which involve alterations in interactions 
between tumor cells and normal host cells. To metastasize, a 
cell or group of cells must detach from the primary tumor, gain 
access to the lymphatic or vascular space, adhere to the endo-
thelial surface at a distant site, penetrate the vessel wall to 
invade the second tissue site, and finally proliferate as a 
second tumor focus. Angiogenesis is necessary for prolifera-
tion of the primary tumor and tumor metastases. Tumor cells 
must also overcome host immune cell killing. As a result, few 
circulating tumor cells (<0.01%) successfully initiate metastatic 
foci. A “survival of the fittest” view of metastasis has been 
proposed, in which selective competition favors metastasis of 
a subpopulation of cells from the primary site.71 Clonal expan-
sion occurs again after formation of a metastatic focus.

Epithelial-Mesenchymal Transition
Modulation of tumor cell interactions with adjacent cells and 
with the extracellular matrix is an essential step as epithelial 
tumor cells invade through the basement membrane and ulti-
mately metastasize to distant sites. A similar process occurs 
during normal embryogenesis, when polarized epithelial cells 
no longer recognize the boundaries imposed by adjacent epi-
thelial cells or their basement membrane and adopt features 
of migratory mesenchymal cells. This phenomenon, desig-
nated epithelial-mesenchymal transition (EMT), has provided 
insight into understanding tumor progression (Fig. 1-7). 
E-cadherin is a critical component of adherens junctions that 
maintain epithelial cell-cell interactions, and loss of E-cadherin 
is one of the key features of the EMT phenotype.72 Mutations 

can alter the transit time of luminal contents in the bowel, 
thereby changing the duration of exposure of the mucosa to 
potential mutagens. Bile salt content may be an additional 
luminal factor that can modulate the biological effect of  
procarcinogens. Deconjugated bile salts may promote carcino-
genesis through mucosal injury and enhanced epithelial 
proliferation.

These mechanisms could explain well-documented corre-
lations between the intake of various dietary constituents and 
the incidence of colorectal cancer in certain populations. Popu-
lations that have a high fiber intake and resulting fast colonic 
transit times generally exhibit a lower incidence of colorectal 
cancer than populations with low fiber intake and delayed 
transit. The incidence of colorectal cancer in Japanese immi-
grants to the United States who consume a Western diet is 
much higher than that of native Japanese who consume a 
traditional Japanese diet.68

Microbiome
The human body possesses over 100 trillion microbes. The 
interaction between these organisms and the host is an area of 
great interest, particularly for a broad range of autoimmune, 
metabolic, and neoplastic disorders. The Human Microbiome 
Project seeks to develop a map for these organisms throughout 
the body, with the goal of correlating specific bacterial species 
with disease states. Although the results of this track of inves-
tigation are preliminary, evidence is accumulating that the 
composition of the gut microbiome may affect cancer risk.69 
Altered bacterial populations have the potential to influence 
metabolic pathways and inflammatory indices in the GI tract.

Viruses also can lead to disruption of normal genes by 
integration into the host genome in a position that disrupts 
normal gene sequences (insertional mutagenesis) or through 
the introduction of aberrant genes present in the virus’s  
own genetic material. Viruses that appear to play a role in 
oncogenesis in the GI tract through insertional mutagenesis 
include human papillomavirus in squamous cell cancers of the 
esophagus and anus, Epstein-Barr virus in gastric lymphoepi-
thelial malignancies, and hepatitis B virus in hepatocellular 
carcinoma.

Inflammation and Cancer
A number of chronic inflammatory conditions increase the 
site-specific risk of cancer, such as ulcerative colitis (Chapter 
116), chronic gastritis (Chapter 52), chronic pancreatitis 
(Chapter 59), Barrett’s esophagus (Chapter 45), and chronic 
viral hepatitis (Chapters 79 and 80). In addition to the direct 
proliferative stimuli, the influences of inflammation on the 
development of neoplasia are multifaceted and complex. 
Immune cells may promote remodeling of the vascular 
network and promote angiogenesis (discussed later). Inflam-
mation may also induce epigenetic changes in cells to favor 
gene silencing of tumor suppressor genes through DNA 
damage from cytokine-stimulated production of reactive 
oxygen species. In addition, cytokines produced by inflamma-
tory cells can lead to activation of nuclear factor (NF)-κB in 
tumor cells that can serve to inhibit apoptosis and stimulate 
proliferation.70 Although chronic inflammation creates a 
pro-tumorigenic environment, it should be noted that the 
immune system also plays an important role in tumor sup-
pression through tumor surveillance. Immunosuppressive 
therapies are associated with an increased risk of malignancy. 
Maintenance of this tight balance of immunoregulation is  
critical to prevent the development of a pro-tumorigenic 
environment.

FIGURE 1-7. An epithelial-mesenchymal transition (EMT) provides 
a model for tumor progression and invasion. Epithelial cells main-
tain their polarity and boundaries with adjacent cells through 
many junctional proteins, including E-cadherin. The loss or down-
regulation of E-cadherin is a key feature in EMT, wherein epithelial 
cells can adopt a migratory mesenchymal phenotype. In tumor 
progression, EMT can occur at multiple levels, including the tran-
sition from early carcinoma in situ to invasive cancer, as well as 
the invasion of a tumor cell into blood and lymphatic vessels. 
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protein are leading to more effective diagnostic markers. The 
most immediate application is assessment of cancer risk in 
members of cancer-prone kindreds. Strategies have been 
developed to identify germline mutations in patients with a 
variety of inherited GI cancer syndromes, including FAP, 
Lynch syndrome, and hereditary diffuse gastric cancer 
(HDGC) (see Table 1-1). Genetic testing is a powerful tool to 
identify high-risk families and define the cancer risk for indi-
vidual family members. Application of genetic testing must 
take into consideration the sensitivity and specificity of the 
assay as well as issues of patient confidentiality and potential 
impact on medical insurability. For these reasons, genetic 
counseling is an essential component of the genetic testing 
process.

Improved detection of sporadic GI cancers and their pre-
cursor lesions has also been the focus of research studies. 
Small numbers of shed cells obtained from stool or fluid aspi-
ration from cysts can be assessed for the presence of mutations 
or epigenetic alterations in specific tumor-associated genes 
(B-raf, K-ras, APC, TP53, etc.). MSI testing can be performed 
on archived colon tumor samples and serves as a useful 
screening test to identify individuals whose colorectal cancers 
may have developed as a manifestation of the Lynch syn-
drome or the serrated pathway to colorectal cancer.77 Loss of 
MSH2, MLH1, PMS2, or MSH6 immunohistochemical stain-
ing may provide similar information. Studies have demon-
strated that the MSI status of a colon tumor is predictive of 
the response to 5-fluorouracil–based chemotherapy.78,79 Thera-
pies that target specific signaling pathways are likely to 
increase as our molecular understanding of GI cancers 
increases. Antibodies that target EGF receptors and block the 
EGF receptor signaling pathway have proved therapeutic 
benefit in colorectal cancer. However, their benefit has been 
shown only in cancers lacking activating mutations in K-ras. 
Testing for K-ras mutations in colorectal cancers is now stan-
dard of care before administration of such targeted therapy. 
In addition, small molecule tyrosine kinase inhibitors of the 
c-KIT oncogene now constitute routine treatment of GI stromal 
tumors (see Chapter 32).80 Molecular techniques may also find 
a role in the staging of disease. For example, capture of small 
numbers of circulating tumor cells prior to the discovery of 
metastasis may yield prognostic and therapeutic benefits.81 
Finally, as more tests for genetic markers become available, 
monitoring for disease recurrence after surgery may become 
another important application.

Genome-wide Association Studies
Although 11% of individuals with colorectal cancer have 2 
close family members with the disease, only a small fraction 
of those occur within an already defined mendelian cancer 
syndrome.82 Moreover, identical twin studies of colorectal 
cancer only demonstrate a 35% risk in the sibling. Identifica-
tion of other genetic variants that confer an increased risk of 
colorectal cancer remains a high priority. Given the develop-
ment of genotyping and deep-sequencing technologies, many 
such variants have been discovered. Two underlying hypoth-
eses, which are not mutually exclusive, have driven the search 
for these variants.

The common disease–common variant hypothesis is based on 
the idea that the heritable risk for illnesses like colorectal 
cancer is based on the summation of the small effects from 
genetic variants that are common (minor allelic frequency 
>5%) in the general population. Thus far, many loci have been 
identified. However, the small relative risk of each associated 
common variant has not yielded any more predictive informa-
tion than family history for diseases like colorectal cancer. 
Despite this limited clinical applicability, identification of 

in E-cadherin are common in many GI cancers, particularly 
gastric cancer. Germline mutations in E-cadherin are linked to 
hereditary diffuse gastric cancer.

The epithelial basement membrane consists of a dense 
matrix of collagen, glycoproteins, and proteoglycans and nor-
mally does not permit passive penetration of cells. The trans-
migration of tumor cells through the basement membrane 
likely involves production of key proteolytic activities. Alter-
natively, the tumor cell may produce factors capable of activat-
ing proenzymes present in the extracellular matrix. For 
example, the tumor may produce urokinase, itself a protease, 
or plasminogen activator. Having gained access to the inter-
stitial stromal compartment, tumor cells can then enter lym-
phatic and blood vessels and metastasize.

Angiogenesis and Lymphangiogenesis
Angiogenesis is essential to sustain continued growth of the 
primary tumor. If new vessels are not developed as the primary 
tumor expands, cells most distant from available vessels are 
deprived of an adequate source of nutrition, and central necro-
sis occurs. Neovascularization is also an important permissive 
factor in facilitating metastatic dissemination of tumors.73 A 
number of protein growth factors produced by malignant 
tumor cells and stromal cells have been found to be potent 
stimuli of angiogenesis, including vascular endothelial growth 
factor (VEGF)-A, basic fibroblast growth factor (bFGF), and 
TGF-β. VEGF-A is perhaps the most critical factor that is 
up-regulated in most tumor types, including colorectal cancer. 
Multiple genetic pathways implicated in GI carcinogenesis 
modulate VEGF-A expression, including Wnt and mutant 
ras.74 Therapeutic strategies that inhibit VEGF-A are now 
standard-of-care therapies in metastatic colorectal cancer (see 
Chapter 127).

Angiogenesis occurs in an ordered series of events. Endo-
thelial cells in the parent vessel are stimulated to degrade the 
endothelial basement membrane, migrate into the perivascu-
lar stroma, and initiate a capillary sprout. The sprout develops 
into a tubular structure that in turn develops into a capillary 
network. In vitro models that recapitulate the early events of 
angiogenesis indicate that this process involves a balance 
between proteases and protease inhibitors in a manner similar 
to that during tumor invasion. Indeed, functional parallels 
between tumor invasion and angiogenesis are evident in their 
mutual requirement for cellular motility, basement membrane 
proteolysis, and cell growth.

In addition to angiogenesis, lymphangiogenesis plays an 
important role in tumor metastasis. Some important clues into 
the molecular basis of tumor lymphangiogenesis have been 
obtained. VEGF-C or VEGF-D bind to the VEGF receptor-3 on 
lymphatic endothelial cells to stimulate formation of new lym-
phatic vessels.75 This results in the development of new lym-
phatic channels within the tumor mass and, consequently, 
enhanced dissemination of tumor cells to regional lymph 
nodes.76 Strategies to inhibit tumor lymphangiogenesis are 
being actively pursued.

MOLECULAR MEDICINE: CURRENT  
AND FUTURE APPROACHES IN 
GASTROINTESTINAL ONCOLOGY

Molecular Diagnostics
Progress in the identification of cancer-associated genes 
coupled with the inherent power of molecular biological tech-
niques to analyze exquisitely small amounts of DNA and 
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Cancer Genome Consortium, are underway to catalog the 
variation in a large number of cancers.

KEY REFERENCES
Full references for this chapter can be found on 
www.expertconsult.com.

2.	 Cancer Genome Atlas Network. Comprehensive molecular 
characterization of human colon and rectal cancer. Nature 
2012; 487:330-7.

11.	 Collado M, Blasco MA, Serrano M. Cellular senescence in 
cancer and aging. Cell 2007; 130:223-33. 

22.	 Weisenberger DJ, Siegmund KD, Campan M, et al. CpG 
island methylator phenotype underlies sporadic 
microsatellite instability and is tightly associated with  
BRAF mutation in colorectal cancer. Nat Genet 2006; 
38:787-93. 

24.	 Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor 
heterogeneity and branched evolution revealed by 
multiregion sequencing. N Engl J Med 2012;  
366:883-92.

25.	 Nguyen LV, Vanner R, Dirks P, et al. Cancer stem cells: An 
evolving concept. Nat Rev Cancer 2012; 12:133-43. 

33.	 Knudson AG Jr. Mutation and cancer: Statistical study of 
retinoblastoma. Proc Natl Acad Sci U S A 1971; 68:820-3. 

58.	 Chan AT, Ogino S, Fuchs CS. Aspirin and the risk of 
colorectal cancer in relation to the expression of COX-2.  
N Engl J Med 2007; 356:2131-42.

60.	 Hutvagner G, McLachlan J, Pasquinelli AE, et al. A cellular 
function for the RNA-interference enzyme Dicer in the 
maturation of the let-7 small temporal RNA. Science 2001; 
293:834-8. 

69.	 Grivennikov SI, Wang K, Mucida D, et al. Adenoma-linked 
barrier defects and microbial products drive IL-23/IL-17-
mediated tumour growth. Nature 2012; 491:254-8. 

83.	 Tennessen JA, Bigham AW, O’Connor TD, et al. Evolution 
and functional impact of rare coding variation from  
deep sequencing of human exomes. Science 2012;  
337:64-9. 

novel genes not previously associated with the disease raises 
the possibility of new therapeutic and diagnostic approaches. 
Another caveat of such studies is that such variants are not 
necessary causal but merely associated, since other variants 
may be in linkage disequilibrium with the variant of 
interest.

The common disease–rare variant hypothesis is based on the 
premise that the genetic risk of diseases such as colorectal 
cancer are primarily driven by a heterogeneous set of rare or 
de novo mutations. In most studies, rare variants are defined 
as those with a minor allelic frequency of less than 1% in the 
general population. Compared to common variants, rare vari-
ants are more likely to have larger effect sizes owing to the 
effect of purifying selection. Recent studies, however, demon-
strate a bulk of the rare variants likely occurred over the past 
5000 years and were due to population expansion and rela-
tively weaker purifying selection of these variants.83 Advan-
tages of rare variant studies are that the identified variant is 
more likely to be directly implicated in disease, given the lack 
of linkage disequilibrium with other variants. Given the larger 
effect sizes, these variants may also play a key role in clinical 
decision making.

Whole Genome Sequencing and Exome Sequencing
Given the decline in DNA sequencing costs, considerable 
interest exists in incorporating the full genomic profile of 
tumors and cancers into clinical care, with the goal of identify-
ing tailored therapeutics suitable for each individual. At 
present, 2 strategies are being actively pursued. The first is 
whole genome sequencing, where the entire genome of the 
tumor is detailed. As our understanding of the non–protein 
coding genome evolves, the expectation is that we may dis-
cover novel prognostic and therapeutic strategies based on 
non–protein coding regions of the genome. Another method 
is to exclusively focus on the exome, the protein-coding 
portion of the genome. Although only comprising 1% of the 
genome, the exome is believed to contain approximately 85% 
of the mutations associated with disease, and the cost of 
exome sequencing is a fraction of whole genome sequencing. 
Multiple efforts, including the National Cancer Institute–
sponsored Cancer Genome Atlas Project and International 
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Mucosal immunity refers to immune responses that occur at 
mucosal sites. The demands upon the mucosal immune system 
are quite distinct from their systemic counterparts. At mucosal 
sites, the “outside world” is typically separated from the inner 
world by a single layer of epithelium. The mucosal immune 
system exists at a number of sites, including the GI tract, 
respiratory tract (especially the upper respiratory tract), uro-
genital tract, mammary glands, eyes, and ears. Regardless of 
the site, unique lymphoid and other cell populations are 
required to handle a wide array of environmental stimuli. 
Together these sites are called mucosa-associated lymphoid 
tissue (MALT).1-5

The intestine is the site most often associated with mucosal 
immunity and is unique in several aspects. Relative to other 
mucosal sites, the intestine is the least sterile, containing bil-
lions to trillions of microorganisms, mainly bacteria. These 
organisms, along with ingested food, represent an enormous 
antigenic load that must be tolerated to maintain the status 
quo in the intestine. This unusual environment and the 
demands associated with it have resulted in the development 
of a distinct immune system designated the gut-associated lym-
phoid tissue (GALT).

The specific characteristics and peculiarities of the GALT 
reflect the unique milieu in which it needs to function. To 
maintain homeostasis in the intestine, one of the most impor-
tant tasks of the GALT is to differentiate between potentially 
harmful antigens (e.g., pathogenic bacteria or toxins) from 
ones that may benefit the body (e.g., derived from food or 
commensal bacteria). To achieve homeostasis, unusual cell 
types, immunoglobulins (Igs), and secreted mediators have to 
function in a coordinated fashion. In contrast to the systemic 
immune system, whose focus is to act quickly within seconds 

of encountering a foreign antigen (“first shoot, then talk”), the 
GALT is poised to respond but is predominantly tolerant, 
rejecting harmful antigens but allowing beneficial/harmless 
ones to persist without evoking immune responses like aller-
gic reactions or inflammation.

The unique ways the GALT performs in its demanding 
environment are the focus of this chapter, along with the con-
sequences of abnormal GALT function that result in intestinal 
disease.

IMMUNE RESPONSES IN  
GUT-ASSOCIATED LYMPHOID TISSUE
The hallmark of mucosal immunity, in contrast to systemic 
immunity, is suppression as exemplified by 2 linked phenom-
ena: controlled/physiologic inflammation and oral tolerance. 
These 2 processes are mediated by a unique anatomy, distinct 
resident cell populations, and selective antibody isotypes.

Controlled/Physiologic Inflammation
Billions of activated plasma cells, memory T cells, memory B 
cells, macrophages, and dendritic cells exist within the lamina 
propria (LP).6,7 Given the large surface area of the GI tract and 
the resident cell populations that inhabit this space, the gut is 
the largest lymphoid organ in the body. Still, in contrast to 
activated lymphocytes in the peripheral immune system, sig-
nificant inflammation is not present in the intestine. This phe-
nomenon has been called controlled/physiologic inflammation 
(Fig. 2-1). Entry of immune cells into the LP and cell activation 
is antigen driven. Germ-free mice have few immune cells in 
their LP, but within hours to days following colonization with 
normal intestinal flora (no pathogens), there is a massive 
influx and activation of cells.8-11 Despite the persistence of an 

*The editors and Dr. Dotan dedicate this chapter to the scientific achieve-
ments and the legacy of Lloyd Mayer, MD, a leader in the field of mucosal 
immunology, a mentor, and a dear colleague and friend.
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antigen drive (luminal bacteria), the cells fail to develop into 
aggressive inflammation-producing lymphocytes and macro-
phages. Bacteria or their products play a role in this persistent 
state of activation12 and likely contribute to the controlled 
inflammatory process as well.

The failure to produce pathology despite the activation 
state of intestinal lymphocytes is probably the consequence of 
regulatory mechanisms. The failure of LP lymphocytes (LPLs) 
to generate “normal” antigen receptor–mediated responses is 
an important factor in controlled inflammation (i.e., lack of 
expansion despite the presence of activation). LPLs respond 
poorly when activated via the T cell receptor (TCR), failing to 
proliferate, although they can still produce cytokines.13,14 This 
is key to the maintenance of controlled inflammation.

Oral Tolerance
The most recognized phenomenon equated with mucosal 
immunity and associated with suppression is oral tolerance.15-21 
Oral tolerance can be defined as the active antigen-specific non-
response to antigens administrated orally.18,22,23

How does the body regulate the response to the vast 
amount of antigens introduced via the oral route, specifically 
those that avoid complete digestion? For example, up to 2% 
of dietary proteins enter the draining enteric vasculature 
intact.23 Non-response to these antigens is achieved by oral 
tolerance. The mucosal immune system in the intestine is 
separated from the continuous antigenic bombardment 

composed of food, intestinal secretions, and microorganisms 
by a single layer of intestinal epithelial cells (IECs). Its ability 
to discriminate between harmful and harmless, or even benefi-
cial, antigens and to generate a differential immune response 
toward each type of antigens is a complex process extensively 
investigated in animal models and existing in humans.24,25 Dis-
ruption of oral tolerance and of a more local mechanism, 
mucosal-induced tolerance, may result in food allergies and 
food intolerances like celiac disease, as well as in inflamma-
tory bowel diseases.

An important difference between oral tolerance against 
food antigens and mucosal tolerance against microorganisms 
is that the former has both local (intestinal) and systemic con-
sequences, whereas the latter does not attenuate systemic 
immune responses.21 Factors affecting the induction of oral 
tolerance include the host’s age, genetic factors, nature of the 
antigen, and the tolerogen’s form and dose. The state of the 
intestinal barrier also affects oral tolerance, and when barrier 
function is reduced, oral tolerance decreases. Part of the  
explanation for oral tolerance relates to the properties of  
digestion per se, where large macromolecules are degraded  
so that potentially immunogenic substances are rendered 
non-immunogenic.

As just mentioned, oral tolerance is age dependent. Oral 
tolerance is difficult to achieve in the neonate, probably owing 
to the rather permeable intestinal barrier that exists in the 
newborn, as well as the immaturity of the mucosal immune 
system. Within 3 months of age (in the mouse), oral tolerance 

FIGURE 2-1. Mechanisms for damping mucosal immune responses. The intestine uses a number of distinct mechanisms to dampen 
mucosal immune responses. The major source of antigen in the intestine is the commensal bacterial flora, but both innate and adap-
tive responses control local responses. Physical barriers like mucins secreted by goblet cells and tight junctions between epithelial 
cells prevent invasion by luminal flora (circle inset). Defensins like HBD-2, -3, and -4 are thought to maintain sterility of the crypt, 
whereas secretory immunoglobulin A produced by local plasma cells prevents attachment and invasion by luminal bacteria, thereby 
reducing antigenic load. Even with antigenic challenge, intestinal lymphocytes, macrophages, and dendritic cells are programmed to 
not respond as a consequence of decreased expression of pattern recognition receptors (e.g., Toll-like receptors) and a decrease in 
the ability of lymphocytes to be activated through their antigen receptor. Egress of circulating lymphocytes expressing the integrin 
α4β7, which recognizes the addressin MAdCAM-1, is also shown. DC, dendritic cell; HBD, human β-defensin; IELs, intraepithelial 
lymphocytes; LPMC, lamina propria mononuclear cells; MAdCAM, mucosal addressin cell adhesion molecule; SIgA, secretory immu-
noglobulin A, a dimer with a connecting J chain; Treg, T regulatory cells (formerly known as suppressor T cells). 
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express the transcription factor Forkhead box P3 (FoxP3). 
Because not every cell within the CD4+CD25+ population is a 
naturally occurring Treg cell, the ability to use FoxP3 as a 
marker of these Treg cells has been a major breakthrough in 
our ability to study them.57-61 Importantly, in mice, absence of 
CD4+ Treg cell activity results in IBD, whereas its expansion 
ameliorates murine colitis.62-66 In IBD patients, the number of 
Treg cells is generally greater than in controls, and a peripheral-
to-intestinal shift has been suggested.66-72 Whether their failure 
to protect against IBD is due to an intrinsic defect or microen-
vironmental effect is still being investigated.73

A role for antigen-specific CD8+ T cells in oral tolerance,74-79 
as well as in the regulation of mucosal immune responses, has 
been suggested by several groups. Specifically, in vitro activa-
tion of human CD8+ peripheral blood T cells by normal IECs 
results in the expansion of CD8+CD28− T cells with regulatory 
activity.80 Moreover, in the LP of IBD patients, such cells were 
significantly reduced, supporting a role for these epithelial-
induced T regulatory (TrE) cells in the control of intestinal 
inflammation.81

Another important factor affecting tolerance induction is 
the state of the intestinal barrier. In addition to failure to gener-
ate tolerance in the neonate (because intestinal permeability is 
higher), several other states of barrier dysfunction are associ-
ated with aggressive inflammation and a lack of tolerance. In 
anaphylaxis, increased intestinal permeability allows antigens 
to pass through paracellular spaces by disrupting tight 
junctions.82-84 Treatment of mice with interferon (IFN)-γ can 
disrupt the mucosal barrier, and these mice fail to develop 
tolerance in response to OVA feeding. Perhaps even more 
interesting observations are failure of N-cadherin dominant 
negative mice to suppress mucosal inflammation (loss of con-
trolled inflammation), possibly because of the enormous anti-
genic exposure resulting from the leaky barrier in these mice.85 
Increased susceptibility of Nod1- and Nod2-deficient mice to 
colitis (associated with increased paracellular permeability 
and decreased E-cadherin) that could be modified using spe-
cific commensals and probiotic strains points to an interplay 
of genetic and microbial factors in intestinal barrier function 
and controlled or uncontrolled inflammation.86

Lastly, oral tolerance may also be influenced by the cell 
serving as the antigen-presenting cell, as well by as the site of 
antigen uptake. In mice, orally administered reovirus type III 
is taken up by M cells expressing reovirus type III–specific 
receptors (Fig. 2-2).87 This induces an active IgA response. In 
contrast, reovirus I infects IECs and induces tolerance. Thus, 
the route of entry (M cell vs. IEC) of a specific antigen may 
dictate the type of immune response generated (IgA vs. toler-
ance). Interestingly, poliovirus, one of the few oral vaccines 
effective in man, binds to M cells, and this may account for its 
ability to stimulate active immunity in the gut.88

UNUSUAL IMMUNOGLOBULINS OF  
GUT-ASSOCIATED LYMPHOID TISSUE
The unique antibody, secretory IgA (sIgA), is the hallmark of 
MALT/GALT immune responses (Fig. 2-3). IgG is the most 
abundant isotype in the systemic immune system, but IgA is 
the most abundant antibody in mucosal secretions.87,89,90 Given 
the numbers of IgA+ plasma cells and the extent of the MALT, 
IgA is the most abundant antibody in the body.

SIgA is a dimeric form of IgA produced in the LP and 
transported into the lumen through the intestinal epithelium 
by a specialized pathway (Fig. 2-4). Two IgA molecules 
(homodimers) are bound together by J chain (produced by 
plasma cells). Subsequently the homodimer binds to a highly 

can be induced, and many previous antibody responses to 
food antigens are suppressed. The limited diet in the newborn 
may further serve to protect the infant from generating a vig-
orous response to food antigens. Furthermore, the intestinal 
flora has been demonstrated to affect the development of oral 
tolerance. Probiotics (e.g., Lactobacillus GG) given to mothers 
before delivery and during lactation provided protection 
against development of atopic eczema in their offspring.26 
Continuous exposure to microbial compounds (e.g., lipopoly-
saccharides) during pregnancy and early infancy was associ-
ated with a lower prevalence of atopy and asthma in 
children.27,28 The effects of probiotics on oral tolerance are 
probably mediated through modulation of cytokine 
responses,29 the positive effect on intestinal barrier function 
and restitution of tight junctions,30,31 suppression of intestinal 
inflammation via down-regulation of Toll-like receptor (TLR) 
expression,32,33 and secretion of metabolites that may inhibit 
inflammatory cytokine production by mononuclear cells.

A role of genetic factors in oral tolerance has been sug-
gested in murine models, where certain strains develop toler-
ance more easily than others.34,35

The nature and form of the antigen also play a significant 
role in tolerance induction. Protein antigens are the most 
tolerogenic, whereas carbohydrates and lipids are much less 
effective at inducing tolerance.31 The form of the antigen is also 
critical; a protein such as ovalbumin (OVA) given in soluble 
form is quite tolerogenic, whereas aggregation of OVA reduces 
its potential to induce tolerance. This difference may be associ-
ated with an alteration in the sites of antigen sampling.6 Expo-
sure (prior sensitization) to an antigen through an extraintestinal 
route also affects the development of tolerance responses.

The dose of antigen administered was also considered 
critical to the form of oral tolerance generated. In mouse 
models, high doses of antigen were suggested to be associated 
with clonal deletion or anergy of T cells.36,37 In this setting, 
transfer of T cells from tolerized to non-tolerized animals does 
not lead to transfer of tolerance. Low doses of antigen, on the 
other hand, were shown to activate regulatory/suppressor T 
cells.38,39 More recent work suggested that high antigen dosing 
was an effective inducer of FOXP3+ regulatory T cells (Treg 
cells),40 but the effect of antigen dose on oral tolerance remains 
to be redefined. Treg cells of both CD4 and CD8 lineages have 
a central role in oral tolerance. Th3 cells were the initial 
regulatory/suppressor cells described as mediators of oral 
tolerance.41-43 These cells appear to be activated in the Peyer’s 
patch and secrete transforming growth factor (TGF)-β. This 
cytokine plays a dual role in mucosal immunity; it is the most 
potent suppressor of T and B cell responses while promoting 
the production of IgA (it is the IgA switch factor).44-47 Produc-
tion of TGF-β by Th3 cells elicited by low-dose antigen admin-
istration helps explain an associated phenomenon of oral 
tolerance bystander suppression. Oral tolerance is antigen 
specific, but the effector arm is antigen nonspecific. If an irrel-
evant antigen is co-administered systemically with the tolero-
gen, suppression of T and B cell responses to that irrelevant 
antigen will occur as well (hence, bystander suppression). 
Secreted TGF-β suppresses the response to the co-administered 
antigen. Tr1 cells may also participate in bystander suppres-
sion and oral tolerance by producing interleukin (IL)-10, 
another potent immunosuppressive cytokine.48-50 Evidence for 
the activation of CD4+CD25+ Treg cells during oral tolerance 
also exists.51-55 Tolerance studies performed in mice depleted 
of CD4+CD25+ T cells, coupled with neutralization of TGF-β, 
demonstrated that CD4+CD25+ T cells and TGF-β together are 
involved in the induction of oral tolerance, partly through 
regulation of the expansion of antigen-specific CD4+ T cells.56 
The ability to identify regulatory CD4+CD25+ T cell subpopu-
lations was enhanced by the recognition that these cells 
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released into the intestinal lumen. Within the lumen, secretory 
component serves its second function, protection of the SIgA 
dimer from degradation by luminal proteases and gastric acid. 
SIgA and SIgM are the only antibodies that can bind secretory 
component and therefore withstand the harsh environment of 
the GI tract.

In addition to its unique form, SIgA is also unique in that 
it is anti-inflammatory in nature. It does not bind classical 
complement components but rather binds luminal antigens 
like toxins and pathogens, preventing their attachment to the 
epithelium or promoting their agglutination and subsequent 
removal of the antigen in the mucus layer overlying the epi-
thelium.89,91-98 This process reflects “immune exclusion,” a 
process thought to include agglutination, entrapment, and 
clearance of antigen as the result of a specific interaction with 
the secreted antibody,99 as opposed to nonspecific mechanisms 
of exclusion exerted by the epithelium (e.g., mucus barrier, 
proteolytic digestion, defensin secretion, etc.). Recently the 
ability of SIgA to exert specific protective immunity against 
certain pathogens via more direct mechanisms such as sup-
pression of bacterial virulence was demonstrated,100 as well as 
a fragment antigen–binding (Fab)-independent pathway of 
antibacterial activity mediated mainly via binding to bacterial 
glycan residues on the free or bound secretory component, or 

specialized glycoprotein, secretory component n (also called 
the polymeric Ig receptor), a 55-kd glycoprotein produced by 
epithelial cells. The polymeric Ig receptor is expressed on the 
basolateral membrane of the IEC and binds only to dimeric 
IgA or IgM (also polymerized with J chain). Once bound to 
the IEC, SIgA is actively transported within vesicles to the 
apical membrane of the IEC. The vesicle fuses with the apical 
membrane, and the secretory component/IgA complex is 

FIGURE 2-2. M cell. Transmission electron micrograph from non-
columnar region of a Peyer’s patch epithelium shows a cross-
sectional view of a microfold (M) cell, as well as associated 
microvillus-covered intestinal epithelial cells and at least 3 lym-
phoid cells (L). Note the attenuated cytoplasm of the M cell 
(between arrows) that bridges the surface between microvillus-
covered epithelial cells, forming tight junctions with them and 
producing a barrier between lymphoid cells and the intestinal 
lumen (×9600). B, B cell; E, intestinal epithelial cell. (From Owen 
RL, Jones AL. Epithelial cell specialization within human Peyer’s 
patches: an ultrastructural study of intestinal lymphoid follicles. 
Gastroenterology 1974; 66:189-203.)
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FIGURE 2-3. Secretory immunoglobulin (Ig)A complex. Two IgA 
molecules are linked by a J chain and stabilized by secretory 
component (polymeric Ig receptor) to form dimeric secretory IgA. 
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FIGURE 2-4. Assembly and secretion of dimeric immunoglobulin 
(Ig)A. IgA and J chain produced by IgA-committed plasma cells 
(bottom) dimerize to form polymeric IgA, which covalently binds 
to membrane-bound polymeric Ig receptor produced by intestinal 
epithelial cells (top). This complex is internalized, transported to 
the apical surface of epithelial cell, and secreted into the lumen. 
SC, secretory component. 
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adhesion, growth, and immune modulation. Mucus protects 
the intestinal wall by several mechanisms. Its stickiness and 
competitive binding of its glycoprotein receptors decrease the 
ability of microorganisms to penetrate the intestine.116-118 It also 
generates a stream that moves luminal contents away from 
epithelial cells. Intestinal infection and inflammation are asso-
ciated with disruption or dysfunction of the mucous barrier 
involving altered commensal microbes and defective innate 
and adaptive host immune responses.119

Underneath the mucus layer, the physical barrier that pre-
vents penetration of antigens across the intestinal epithelium 
consists of the epithelial cell per se (the transcellular route) 
and the tight intercellular spaces (the paracellular route) regu-
lated by tight junction (TJ) complexes (e.g., zona occludens) 
and the subjunctional space.120 Of the 2 structures, tight junc-
tions have the greater role in preventing macromolecular dif-
fusion across the epithelium, because these junctions exclude 
almost all molecules present in the lumen.121 The barrier 
formed by the TJ is a dynamic structure that may be modified 
by various cytokines and growth factors. Some (e.g., IFN-γ, 
TNF-α, IL-1β, IL-4, IL-6, IL-13) increase intestinal TJ permea-
bility, whereas others (IL-10, IL-17, TGF-β) decrease intestinal 
TJ permeability,122 a characteristic that might be crucial for 
preventing intestinal inflammation like that seen in IBD.123

The epithelial cells themselves serve as a physical barrier 
in several ways: their microvilli are at a distance of about 
25 nm from each other and are negatively charged. Thus a 
negatively charged molecule would be inhibited from passage 
even if its diameter was well below 25 nm. Despite these bar-
riers, intact antigens may traverse the epithelium by fluid 
phase endocytosis and enter the circulation.124

FUNCTIONAL ANATOMY OF  
GUT-ASSOCIATED LYMPHOID TISSUE
To accomplish the goals of the mucosal immune system in the 
intestine (maintenance of homeostasis and clearance of patho-
gens), several key features have been identified. Compartmen-
talization of cells into distinct regions and sites despite being 
millimeters away from each other is a hallmark of the GALT. 
Cell populations and the immune response in the epithelium, 
subepithelial region, LP, Peyer’s patches, and mesenteric 
lymph nodes (MLNs) may differ substantially.

The cells residing in these compartments differ not only 
topographically but also phenotypically and functionally, 
depending upon the anatomic site within the GALT. Cells with 
distinct phenotypes and functions are attracted to specific sites 
within the GALT.

Peyer’s Patches and M Cells
The follicle-associated epithelium (FAE) is a specialized epi-
thelium overlying the only organized lymphoid tissue of the 
GALT: the Peyer’s patch. The M (microfold) cells in the FAE, 
in contrast to the adjacent absorptive epithelium, have few 
microvilli, a limited mucin overlayer, a thin elongated cyto-
plasm, and a shape that forms a pocket surrounding subepi-
thelial lymphocytes, macrophages, T cells, B cells, and 
dendritic cells (DCs) (see Fig. 2-2). M cells are highly special-
ized for phagocytosis and transcytosis and are capable of 
taking up large particulate antigens from the lumen and trans-
porting them intact into the subepithelial space.125-130 They 
contain few lysosomes, so little or no processing of antigen 
occurs.131 M cells are exposed to the lumen, thus having a 
larger area for contact with luminal contents. The M cell 
expresses several unique lectin-like molecules that help 

the SIgA complex.101,102 M cells in Peyer’s patches selectively 
bind SIgA and SIgA immune complexes.103,104 Although the M 
cell receptor for this specific interaction was not clearly identi-
fied, it was suggested that SIgA undergoes conformational 
changes following luminal antigen binding, which contributes 
to enhanced uptake of the SIgA-pathogen complex, as opposed 
to the excessively present SIgA.105 This “retrotransport” of 
antigens, whether pathogens or allergens, was speculated to 
be a potential mechanism to dampen local inflammatory 
responses exerted when the same pathogens or allergens 
invade the intestinal mucosa uncoated with SIgA.106

IgM is another antibody capable of binding secretory com-
ponent (pIgR). Like IgA, IgM uses J chain produced by plasma 
cells to form polymers—in the case of IgM, a pentamer. Secre-
tory component binds to the Fc portion of the antibody formed 
during polymerization. The ability of IgM to bind secretory 
component may be important in patients with IgA deficiency, 
where secretory IgM (SIgM) may compensate for the absence 
of IgA in the lumen.

While SIgA is the major antibody isotype produced in the 
GALT, IgG has been detected as well.107,108 The neonatal Fc 
receptor expressed by IECs (FcRN) might serve as a bidirec-
tional transporter of IgG109,110 and may be important in control 
of neonatal infections and IgG metabolism. In patients with 
IBD, marked increases in IgG within the LP and lumen have 
been observed.111

Even IgE production may play an important role in intes-
tinal diseases in the GALT. CD23 (low-affinity IgE Fc receptor) 
has been reported to be expressed by gut epithelial cells, and 
one model has suggested that it may play a role in facilitated 
antigen uptake and consequent mast cell degranulation in 
food allergy. In this setting, IgE transcytosis and mast cell 
degranulation may be associated with fluid and electrolyte 
loss into the lumen, an event intimately associated with an 
allergic reaction in the lung and gut.112,113

PHYSIOLOGY OF GUT-ASSOCIATED 
LYMPHOID TISSUE AND THE INTESTINAL 
BARRIER
The cells, structures, and mediators separating the intestinal 
lumen from the LP function as a physical barrier. However, 
this physical barrier is a biologically active structure that con-
stantly interacts with its ever-changing environment. The 
intestinal barrier changes not only on a day-to-day basis but 
also through the years. Many barrier mechanisms are not fully 
developed at birth, and evidence in animal studies exists to 
support less restricted antigen transport in neonates compared 
to adults.

Factors in the upper GI tract influence the antigenic load 
that reaches the major sites of the GALT in the small and large 
bowel. Detailed exploration of these factors is beyond the 
scope of this chapter but include proteolysis, gastric acidity, 
and peristalsis.

The mucous coat lining the intestinal tract is composed of 
a mixture of glycoproteins (mucins) heavily glycosylated with 
O-linked oligosaccharides and N-glycan chains, linked to a 
protein backbone. There are at least 21 different mucin genes 
in the human genome, encoding secreted and membrane 
bound mucins, each with a distinct carbohydrate and amino 
acid composition.114,115 The major colonic mucins are MUC1, 
MUC2, MUC3A, MUC3B, MUC4, MUC13, and MUC17. 
MUC2, produced in goblet cells, is a secreted mucin and 
serves as the primary component of intestinal mucus, while 
the other mucins listed are membrane bound. The membrane 
bound mucins participate in processes such as cell signaling, 
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IECs contribute to both innate and adaptive immunity in  
the gut and may play a key role in maintaining intestinal 
homeostasis.

Antigen Trafficking Across the Epithelium
The ability of intact antigen to cross the lipid bilayer at the 
surface of the intestinal epithelium (underneath the microvilli) 
is limited, although invagination of apical membranes regu-
larly occurs, allowing macromolecules to be carried into the 
cell within membrane-bound compartments.

Binding to the surface of the cell depends on the structure 
of the antigen and the chemical composition of the microvil-
lous membrane. For instance, bovine serum albumin binds 
less efficiently to the intestinal epithelial surface than bovine 
milk protein, and as a consequence is transported less effi-
ciently.149 Structural alterations in an antigen caused by prote-
olysis might also affect its binding, because this will change 
the physicochemical characteristics of the molecule.150 Several 
factors influence the transport of antigens from the apical to 
the basolateral surface of IECs. The rate of vesicular passage 
to the basolateral membrane depends on the rate of endocy-
tosis, the proportion of vesicles trafficking to the lysosome, 
and the speed of travel of membrane-bound compartments. 
Lysosomally derived enzymes determine the rate of break-
down of products contained in membrane compartments. 
These include proteases like cathepsin B and D (found 
throughout the length of the intestine, particularly in the mid- 
and distal third of the small intestine), as well as those that 
catalyze carbohydrate breakdown, like acid phosphatase and 
mannosidase. It is the degree to which the organellar contents 
encounter such enzymes (in the lysosome or in endocytic 
vesicles) that determines the rate of intracellular destruction 
of macromolecules.151 Although cathepsins are capable of 
catalyzing antigens, they may not completely digest protein 
and may require further proteolysis by peptidases in the 
cytoplasm.

Recognition of Pathogen-Associated Molecular 
Patterns by Pattern Recognition Receptors
Classical antigen-presenting cells (APCs) in the systemic 
immune system possess the innate capacity to recognize com-
ponents of bacteria and viruses called pathogen-associated 
molecular patterns (PAMPs). Receptors for these PAMPs are 
expressed on both the cell surface (e.g., TLRs) and inside the 
cell (e.g., nuclear oligomerization domain [NOD]). Despite the 

promote binding to specific pathogens, the prototype being 
poliovirus.132 Antigens that bind to the M cell and get trans-
ported to the underlying Peyer’s patches generally elicit a 
positive (secretory IgA) response. Successful oral vaccines 
bind to the M cell and not to the adjacent epithelium. Thus, M 
cells appear to be critical for the initial positive aspects of 
mucosal immunity.133,134 However, this may be a double-edged 
sword; certain pathogens or their toxins may exploit M cells 
and use transcytosis via M cells for penetration of the intesti-
nal mucosa.135,136

The M cell is a conduit to the Peyer’s patches. Antigens 
transcytosed across the M cell and into the subepithelial 
pocket are taken up by macrophages/DCs and carried into the 
Peyer’s patch. Once antigens reach the patch, TGF-β–secreting 
T cells promote B cell isotype switching to IgA.137 Importantly, 
there is a clear relationship between M cells and Peyer’s 
patches. Induction of M cell differentiation has been shown to 
be dependent upon direct contact between the epithelium and 
PP lymphocytes.138 This is mediated, at least in part, by the 
expression of NOTCH receptors and ligands.139 In the absence 
of Peyer’s patches there are no M cells. For example, M cells 
have not been identified in B cell–deficient animals (where 
there are no Peyer’s patches).140 Even though M cells and 
Peyer’s patches may be involved in oral tolerance,141-143 Peyer’s 
patch–deficient mice are capable of developing tolerance after 
oral administration of soluble antigen.144

After activation in the Peyer’s patch, lymphocytes are 
induced to express specific integrins (α4β7) that provide a 
homing signal for mucosal sites (where the ligand is MadCAM-
1).145-147 Lymphocytes then travel to the MLN and subsequently 
into the main intestinal lymphatic drainage system, the tho-
racic duct, which eventually empties into the circulation (Fig. 
2-5). There, mucosally activated cells with their mucosal 
“addressins” circulate in the bloodstream to exit in high endo-
thelial venules in various mucosal sites.148 Those bearing α4β7 
molecules exit in the MALT/GALT LP, where they undergo 
terminal differentiation. Chemokines and their receptors (dis-
cussed later) as well as adhesion molecules and ligands may 
help direct this trafficking pattern.

Intestinal Epithelial Cells
Intestinal epithelium is composed of a single layer of colum-
nar cells. These IECs are derived from the basal crypts and 
differentiate into absorptive villous or surface epithelium or 
secretory goblet cells, neuroendocrine cells, and Paneth cells. 
In addition to their function as a physical barrier in the GALT, 

FIGURE 2-5. Mucosal lymphocyte migration. Fol-
lowing antigenic stimulation, T and B lympho-
cytes migrate from the intestine (Peyer’s patch) 
to the draining mesenteric lymph nodes, where 
they further differentiate and then reach the 
systemic circulation via the thoracic duct. Cells 
bearing appropriate mucosal addressins then 
selectively home to mucosal surfaces that con-
stitute the common mucosa-associated lym-
phoid tissue (MALT), including the intestine 
(gut-associated lymphoid tissue [GALT]). 
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expression.180 In addition to MHC class II expression, IECs 
(from normal or IBD patients) express a variety of co-stimulatory 
molecules required for T cell activation (Fig. 2-6). These 
include intercellular adhesion molecule (ICAM)-1, which 
binds to leukocyte function associated antigen (LFA)-l on the 
T cell, B7h, and B7H1. B7-2 (which binds to CD28 and CTLA-
4)181,182 has been shown to be expressed by ulcerative colitis 
IECs. Interestingly, unique expression of these co-stimulatory 
molecules by IECs may be involved in the distinct regulation 
of mucosal responses. Failure to engage CD28 by B7 family 
members may result in T cell tolerance in naive T cells. This 
may be less of an issue in the GALT, where cells express the 
memory phenotype.183-184 Indeed, phase III trials in patients 
with moderate to severe Crohn’s disease and ulcerative colitis 
revealed no demonstrable evidence for a therapeutic benefit 
of CTLA4-Ig (abatacept).185 There may be several explanations 
for the clinical result (e.g., CD28-related pathways are of mar-
ginal importance in IBD pathogenesis, or use of CTLA4-Ig 
might have impeded Treg function in addition to preventing 
effector T cell activation), but the most plausible explanation 
is the relative lack of dependence on co-stimulation that effec-
tor memory T cells, the predominant type of T cell in the gut, 
exhibit.186 Small intestinal IECs do not express B7-1 (CD80),187 
so activation of naive T cells by IECs is improbable, aiding in 
the down-regulation of T cell responses. However, increased 
expression during intestinal inflammation may serve to 
augment T cell stimulation.188

MHC class I and non-classical class I molecules are also 
expressed by IECs. Thus, antigen presentation to unique T cell 
populations is possible and has been reported by several 
groups.172,189-195 Specifically, CD1d expressed on human IECs is 
able to present antigen (in a complex with CEACAM5) to CD8+ 
T cells.196-199 CD1d-restricted natural killer T (NKT) cells, effec-
tor memory cells that share characteristics of innate and adap-
tive lymphocytes, are among the earliest responders in 
immune reactions and affect activation of other immune cell 
lineages like NK cells, T cells, and B cells. NKT cells have a 
role in infectious, malignant, and immune-mediated dis-
eases.200 Other non-classical class I molecules are expressed by 
IECs. The role of MICA, a stress-induced MHC-related mole-
cule expressed on normal IECs and recognized by the NKG2D-
activating receptor on CD8+ T cells, gammadelta T cells, and 
NK cells, may be of specific importance because it has been 
reported that Crohn’s disease patients had increased numbers 
of CD4+NKG2D+ T cells with a Th1 cytokine profile and 
expressing perforin in the periphery and in the intestinal 
mucosa.201 Other non-classical MHC molecules expressed by 
IECs are being explored (MR-1, TL, Hmt-1, HLA-E, HLA-G), 
stressing the potential of the intestinal epithelium to serve as 
a non-classical APC in the gut.202-205

In humans, IECs specifically activate CD8+ Treg cells.172 
These regulatory cells may be involved in local tolerance as 
well as interaction with intra-epithelial lymphocytes (CD8+ T 
cells). The role of IECs in the regulation of mucosal immunity 
is best demonstrated in studies with IBD tissues. IECs derived 
from IBD patients, in contrast to normal IECs, stimulate CD4+ 
T cells in vitro rather than regulatory CD8+ cells.178,179,206 Fur-
thermore, oral antigen administration does not result in toler-
ance in IBD patients, but rather results in active immunity.25

INTESTINAL MONONUCLEAR CELLS

Intraepithelial Lymphocytes
Juxtaposed to IECs reside 2 unusual lymphocyte populations, 
each very different from the other. These include intraepithe-
lial lymphocytes (IELs) and LPLs (discussed later). The clear 

fact that IECs live adjacent to large numbers of luminal flora, 
they retain the ability to recognize components of these bacte-
ria. Overall, while pro-inflammatory responses are down-
regulated (i.e., in the normal setting, expression of the 
lipopolysaccharide [LPS] receptor TLR4 is absent), expression 
of some of these pattern recognition receptors are maintained, 
such as expression of TLR5, which recognizes bacterial flagel-
lin.152 This receptor is expressed basolaterally, and it is poised 
to identify organisms that have invaded the epithelial layer 
(e.g., Salmonella species).153 Following invasion and engage-
ment of TLR5, the intestinal epithelium is induced to secrete 
a broad array of cytokines and chemokines that attract inflam-
matory cells to the local environment to control the spread  
of infection. In contrast, some bacteria are probiotic and  
induce anti-inflammatory cytokine production (e.g., IL-10) 
and increase expression of peroxisome proliferator–activated 
receptor (PPAR)-γ by IECs.154,155 Furthermore, other bacterial 
products (e.g., from Bacteriodes thetaiotaomicron) help promote 
the barrier and IEC differentiation.156

Intracellular NOD1 and 2 have been shown to contribute 
to intestinal inflammation; about 25% of Crohn’s disease 
patients have mutations in the NOD2/CARD15 gene, interfer-
ing with their ability to mount an appropriate immune 
response to bacterial stimuli157-162 (see Chapter 115). In addi-
tion, TLRs that are normally weakly expressed by IECs are 
expressed at higher levels on IECs from patients with IBD.163 
Expression of different TLRs by IECs, as well as their contribu-
tion to innate and adaptive T and B cell responses in both 
intestinal inflammation and homeostasis, has been demon-
strated in several murine models.164,165 The importance of TLR 
and NOD2/CARD15 expression and signaling in the intestine 
has been reviewed.166-168

TLR expression by professional APCs is also down-
regulated in the LP. This finding, along with others de
scribed, contribute to the immunologic non-responsiveness  
of the GALT.

ANTIGEN PRESENTATION IN THE GUT
Effective immune responses to antigenic proteins require the 
help of T lymphocytes. This in turn depends on the antigen 
being presented by APCs that internalize, digest, and couple 
a small fragment of the antigen to a surface glycoprotein 
(major histocompatibility complex [MHC] class II or HLA-D 
in humans) that eventually interacts with a T cell receptor. 
Several cells in the GALT can act as APCs, including B cells, 
macrophages, and dendritic cells. The ability of these cells to 
present antigen depends on the expression of class II MHC on 
their surface. Class II MHC molecules are also present on the 
epithelium of the normal small intestine and to a lesser extent 
colonocytes in both humans169 and rodents.170 In vitro studies 
have demonstrated that isolated enterocytes from rat and 
human small intestine can present antigens to appropriately 
primed T cells.171-173 This raises the possibility that in the intes-
tine, IECs might present peptides to GALT T cells that are 
localized below the epithelium. Thus, IECs are capable of both 
antigen processing and presentation in the appropriate context 
to cells within the LP. Interestingly, bidirectional lymphocyte-
epithelial crosstalk exists in the LP, and LP lymphocytes (LPLs) 
promote mucosal barrier function via Notch-1 signaling and 
induction of IEC differentiation, polarization, and barrier 
function.174,175 Importantly, in IBD, increased expression of 
MHC class II molecules by IECs has been reported.176,177 This 
would be expected to increase the potential of IECs to activate 
lymphocytes, as indeed reported.178,179

Interestingly, drugs used to treat IBD (e.g., 5-aminosalicylate 
[5-ASA] preparations) may reduce IEC MHC class II 
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FIGURE 2-6. A normal intestinal epithelial cell (IEC). The IEC is shown to express classic MHC molecules (classes I and II) that have the 
potential to present conventional antigen to local T cell populations and a broad array of nonclassic class I molecules (e.g., CD1d, 
MICA/MICB, and β2m [shown in the figure] and MR-1, ULBP, HLA-E, and FcRn [not shown]), which have the potential to present 
unconventional antigens to unique T cell populations. In addition, alternate pathways of activation appear to be functional in the intes-
tine (e.g., activation via a CD58-CD2 interaction), and classic co-stimulatory molecules are not expressed on IECs, although CD86 
may be induced in patients with UC. Other members of the B7 family are expressed (B7h and B7H-1) and may play a role in local T 
cell activation. β2 Microglobin (β2m) associates with MHC class I, CD1d, HLA-E, HLA-G, and FcRn. β2m, β2 microglobulin; gp180, 
membrane glycoprotein 180 (a CD8 ligand); IEL, intraepithelial lymphocyte; LPL, lamina propria lymphocyte; MHC, major histocompat-
ibility complex; MICA/MICB, MHC class I-related chains A and B; TCR, T cell receptor. 
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double-negative cells. Both subpopulations have been shown 
to be cytolytic, killing via granzyme or by engagement of Fas. 
They also secrete Th1 cytokines. However, antigen-specific 
type a IELs can transfer protection against a variety of patho-
genic organisms, whereas type b IELs are unable to transfer 
immunologic protection and do not possess immunologic 
memory. This is possibly due to their activation by IECs in situ 
by non-classical MHC molecules rather than by the polymor-
phic MHC-expressed molecules on professional APCs that 
activate type a IELs.216 IELs express a variety of activation 
markers and are CD45RO+ (memory cells). IELs also express 
the GALT-specific integrin αEβ7.217,218 It is induced by TGF-β, 
and its ligand on IECs is E-cadherin, which is involved in cell 
signaling and cytoskeletal rearrangement.218 When isolated, 
IELs are difficult to activate through their TCR and barely 
proliferate even in response to potent stimuli.213 They may be 
activated by alternative pathways (e.g., via CD2).

Type a IELs secrete cytokines that are different from the 
ones secreted by their peripheral blood counterparts (e.g., 

compartmentalization of these 2 distinct cell populations cor-
relates with their ability to respond to distinct microenviron-
mental cues.

IELs form one of the main branches of the intestinal 
immune system, balancing protective immunity with support 
of epithelial barrier integrity. In the small intestine, IELs are 
more than 98% T cells and are mostly CD8+,207-214 including 
CD8+αα T cells, as well as CD4+CD8+ double-positive, and 
CD4−CD8− double-negative cells. Greater numbers of these 
cells also express the γδ TCR, in contrast to the αβ TCR 
expressed by T cells in systemic immune system.215 Roughly 
half of murine small bowel IELs express the γδ TCR,216 while 
both the murine and human large intestine contain primarily 
αβ CD4+ or CD8+ T cells similar to those found in the systemic 
immune system.

Based on their phenotype, IELs have been classified into 2 
subsets, a and b, where type a includes TCRαβ T cells selected 
in the thymus, with conventional MHC class I and II, and type 
b includes TCRαβ CD8+αα, TCRγδ double-positive, and TCRγδ 
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and T lymphocytes interact with antigen sampled via M cells 
in the follicle-associated epithelium (FAE). Activation and 
maturation of T lymphocytes from naive Th0 cells to distinct 
biased subpopulations is strongly influenced by the microen-
vironment. Specifically, contact with DCs, professional APCs 
within the GALT and their secreted mediators, will skew T 
lymphocytes to one of several effector cells. IL-2–, IFN-γ–, and 
TNF-α–secreting Th1 cells develop when DCs secrete the 
IL-12/p35-40 heterodimer.230 This induces activation and 
phosphorylation of the transcription factor STAT-4 (signal 
transducer and activator of transcription factor 4).231 STAT-4 in 
turn induces IFN-γ expression and production. IFN-γ induces 
activation of STAT-1 and consequently of T box expressed in 
T cells (T-bet), which is the master transcription factor that 
induces Th1 cytokine as well as IL-12 receptor β2 production, 
while simultaneously suppressing Th2 cytokine production. 
Thus, a cycle promoting Th1 and suppressing Th2 responses 
is created. Overactivation of T-bet is possibly an essential step 
for Th1-mediated mucosal diseases, such as those seen in 
some patients with Crohn’s disease.231 Another Th1-promoting 
cytokine is IL-18, mediating its effects by augmenting IL-12Rβ2 
chain expression on T cells and AP-1(c-fos/c-jun)-dependent 
transactivation of the IFN-γ promoter. It also activates nuclear 
factor κB (NF-κB) in T cells.230

In contrast, when IL-4 is secreted, Th2 cytokine production 
(IL-4, IL-5, IL-6, IL-9, IL-10, IL-13) occurs by activation of 
STAT-6 followed by activation of the transcription factor 
GATA-3. GATA-3 is capable of promoting the expression of 
several Th2 cytokines, including IL-4, IL-5, and IL-13.232 In 
addition to IL-4, IL-13 also plays an important role in Th2 
development and IgE synthesis in an IL-4–independent 
fashion. These cytokines appear to play a role in the develop-
ment of food allergies (see Chapter 10). IL-5 induces B cells 
expressing surface IgA to differentiate into IgA-producing 
plasma cells. IL-6 causes a marked increase in IgA secretion, 
with little effect on either IgM or IgG synthesis.233 Thus, in the 
normal state in the GALT, a Th2 bias might exist.

Recently, additional T helper populations were identified. 
Among those, the Th17 population seems to be most impor-
tant, with specific relevance to intestinal inflammation. Impor-
tantly, part of the Th1 data previously reported should be 
reevaluated because it may be related to Th17 cells. The reason 
is that the Th1-polarizing cytokine IL-12, composed of the p40 
and p35 subunits, has similarities with the Th17-polarizing 
cytokine IL-23, composed of p40 and the unique p19 subunit. 
Thus, antibodies targeting the common p40 subunit shared  
by both IL-12 and IL-23 may fail to differentiate between Th1 
and Th17 inflammatory pathways. The possibility that some 
of the inflammatory activity previously attributed to an IL-12–
driven Th1 pathway might actually be an IL-23–driven Th17 
pathway was supported by studies showing that intestinal 
inflammation was still possible when IL-12 was inhibited,  
and that inhibition of IL-23 rather than IL12 ameliorated 
inflammation.234-238 Thus, in Crohn’s disease, where increased 
expression of both IL-12 and IL-23 exists, inhibition of both 
Th1 and Th17 may be a reasonable therapeutic option. Accord-
ingly, inhibition of the common p40 subunit of IL-12 and  
IL-23 was beneficial in clinical studies in Crohn’s disease 
patients.239,240 Th17 cells express retinoid-related orphan 
receptor-χt (RORχt), which is the master transcription factor 
for these cells. In addition to RORχt, human Th17 cells express 
IL-23R, CCR6, and CD161, whereas they lack CXCR3, a che-
mokine receptor characteristic of Th1 cells.241-244 The main 
effector cytokines secreted by Th17 cells are IL-17A, IL-17F, 
IL-21, IL-22, IL-26, TNF-α, and the chemokine CCL20. Th17 
cells differentiate under the influence of IL-1β, IL-6, IL-21, 
IL-23, and TGF-β.243 In humans, not all Th17 cells produce 
IL-22, and a Th22 subset of CD4 helper T cells that produces 

IL-7).212,219-221 A broad spectrum of cytokines are produced by 
IELs, including IFN-γ, TNF-α, IL-2, IL-4, IL-6, IL-10, TGF-β, 
keratinocyte growth factor (KGF), and IL-17, with important 
effects on intestinal barrier function and local immune 
responses.222

Functionally, it has been suggested that IELs poten
tially kill epithelial cells that have undergone some form of 
stress such as infection, transformation, or invasion by other 
cells.214-216,223 Alternatively, it has been proposed that IELs are 
active in suppressing local immunity, although the evidence 
that they actually function in luminal antigen recognition is 
weak. IELs do not travel in and out of the epithelium. Rather, 
the epithelial cells grow over the IELs as they move from the 
crypt to the surface. Thus, IELs likely serve as sentinels for 
epithelial integrity.

Lamina Propria Mononuclear Cells
The LP is the major effector site in the GALT. It has been sug-
gested that the LP may be an inductive site as well, because 
antigen presentation by professional and non-professional 
APCs may occur in the LP itself. The LP is also considered a 
graveyard for activated lymphocytes. LP lymphocytes (LPLs) 
are more prone to undergo apoptosis than their peripheral 
counterparts. This may be a regulatory mechanism limiting 
the potentially inflammatory effects of activated lymphocytes. 
In inflammatory bowel diseases like Crohn’s disease, a major 
reported defect is the resistance of IBD LPL to undergo apop-
tosis when activated inappropriately (see later).

Clearly the GALT operates under a distinct set of rules 
compared to the systemic immune system. This is reflected not 
only in its functional anatomy (no organized structure) but 
also in its responses and regulation. As already alluded to, 
highly specialized cells mediate these effects, some detected 
only in the GALT.

Lamina propria mononuclear cells (LPMCs) are a hetero-
geneous group of cells224,225 (see Fig. 2-1). The most prevalent 
cell type is the IgA+ plasma cell, but there are more than 50% 
T cells and B cells (together comprising the LPL population), 
macrophages, and dendritic cells (DCs). In contrast to IELs, 
LPLs express the mucosal addressin α4β7. Similar to IELs, 
they express an activated memory phenotype and do not pro-
liferate in response to engagement of the TCR. Alternate path-
ways of LPL activation are mainly via CD2 and CD28.219,226,227

Down-regulating the ability of these cells to respond to 
stimulation via the TCR (i.e., to antigen) may be another mech-
anism involved in dampening immune responses to normal 
luminal contents, along with the increased tendency for LPLs 
to undergo apoptosis if activated inappropriately. The mecha-
nism underlying this latter phenomenon possibly relates to 
engagement of the death receptor Fas and its ligand on acti-
vated LPLs, and by the imbalance between the intracellular 
anti- and pro-apoptotic factors, Bcl2 and Bax. Defects in  
this pro-apoptotic balance have been reported in Crohn’s 
disease.228,229

The observations described thus far all contribute to the 
normal scenario within the LP, called controlled/physiologic 
inflammation. This state of inflammation is the norm in the gut, 
whereas it would be considered indicative of disease in any 
other organ. When regulatory mechanisms go awry—an 
increase in cell recruitment coupled with a decrease in 
apoptosis—the result is uncontrolled inflammation, such as what 
is observed in patients with IBD.

T Cell Differentiation
As already described, within the LP there is an organized 
lymphoid structure, the Peyer’s patch (see Fig. 2-5). There, B 
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receptor CX3CR1 and form transepithelial dendrites that 
allow direct sampling of luminal antigen.253 It has been sug-
gested that IECs expressing CCL25 (the ligand for CCR9 and 
CCR10) attract DCs to the small bowel, while CCL28 (the 
ligand for CCR3 and CCR10) attracts them to the colon.254-256

DCs process internalized antigens more slowly than mac-
rophages,178,257 and this probably contributes to local toler-
ance.179,180,258,259 Tolerance induction by DCs is associated with 
their degree of maturation at the time of antigen presentation 
to T cells (immature DCs activate Tregs), down-regulation of 
co-stimulatory molecules CD80 and CD86, production of the 
suppressive cytokines IL-10, TGF-β and IFN-α, and interaction 
with the co-stimulatory molecule CD200.181-183,260-262 Recent 
reports demonstrate that murine CD103+ DCs were able to 
perform all stages of antigen processing, including uptake, 
transportation, and presentation of bacterial antigens.263

Intense recent research also showed that LP-resident 
CD103+ DCs share the burden of immunosurveillance 
with CX3CR1+ macrophages, and that impaired function of 
these subpopulations may contribute to the development  
of IBD.264

GUT-ASSOCIATED LYMPHOID  
TISSUE–RELEVANT CHEMOKINES
Many of the chemokines secreted in the GALT are produced 
by IECs, one more piece of evidence for their active participa-
tion in regulating intestinal immune responses. This is espe-
cially true in inflammatory bowel diseases, where the secretion 
of both IEC-derived chemokines and cytokines are increased, 
mainly owing to enhanced bacterial translocation and IFN-γ 
production, contributing to the augmentation of mucosal 
inflammation. Of the chemokines secreted, those secreted by 
IECs have the capacity to attract inflammatory cells like lym-
phocytes, macrophages, and DCs.

The chemokine CCL5 (regulated on activation, normal T 
cell expressed and secreted [RANTES]) is secreted predomi-
nantly by macrophages but can also be produced by human 
IECs.265 RANTES may have a role in innate as well as adaptive 
mucosal immunity,266 and increased RANTES expression has 
been demonstrated in the mucosa of patients with ulcerative 
colitis.267-270 Bacterial induction of RANTES in the epithelium 
of inflammasome-deficient mice led to exacerbation of colitis, 
creating an autoinflammatory circuit.271

The CXC chemokines—monokine induced by interferon-γ 
(MIG, CXCL9); interferon-γ-inducible protein 10 (IP-10, 
CXCL10), a chemokine that appears to promote Th1 responses 
and therefore may be relevant in Crohn’s disease; and IFN-γ-
inducible T cell α-chemoattractant (ITAC, CXCL11)—are con-
stitutively expressed by lymphocytes, endothelial cells, and 
human colonic IECs.272-273 Their expression and polarized 
basolateral secretion increase after IFN-γ stimulation. CXC 
chemokines attract Th1 cells expressing high levels of 
CXCR3.274 They also contribute to NK T cell chemotaxis and 
increased cytolytic responses275 and activate subsets of DCs.276 
By attracting CD4+ Th1 cells that produce IFN-γ, up-regulation 
of expression and secretion of CXC chemokines occurs as IECs 
express IFN-γ receptors. This appears to contribute to a posi-
tive feedback loop that may be relevant in inflammatory 
states, specifically IBD and celiac disease. Importantly, block-
ade of the CXCR3-CXCL10 axis has been shown to be benefi-
cial in ameliorating murine colitis,277 as well as in a phase II 
study in patients with ulcerative colitis.278

In contrast to the inflammation-related CXCR3 receptor, a 
tissue-specific chemokine receptor, CCR9, is constitutively 
expressed on small bowel IELs and LPLs.279-281 Its ligand, the 
chemokine thymus-expressed chemokine (TECK, CCL25) is 

IL-22 but not IL-17 has been identified.244 While IL-17 pro-
motes recruitment and activation of neutrophils, IL-22 pro-
motes mucosal healing through epithelial proliferation and 
increased mucus production.245 A role for IL-17/IL-22 imbal-
ance in the pathogenesis of ulcerative colitis has recently been 
suggested.246

The biology of T cell lineages in the LP is complex. Part of 
this complexity is related to the plasticity of these cell popula-
tions. Under specific circumstances, Th17 cells may become 
Th1 cells. Moreover, regulatory Foxp3+ cells expressing Th17 
cytokines and having potent suppressor activity in vitro were 
recently identified in humans.247 This suggests that a certain 
degree of plasticity in vivo exists in all known T cell subsets, 
reflected in their capacity to produce cytokines depending on 
the specific microenvironment. The complexity of T cell, spe-
cifically Th17 cell, biology in the intestinal LP may be one 
reason for the failure of anti-IL-17A monoclonal antibody 
therapy in active Crohn’s disease.248,249 Other Th17 cytokines 
remained uninhibited, thus potentially contributing to the lack 
of a therapeutic effect of such a strategy. Addressing the com-
plexity of the LP milieu with its vast amounts of mediators 
and effectors, including the microbiota, may assist in better 
design of future therapeutic strategies, as well as our attempts 
to modify intestinal inflammation, such as the one resulting  
in IBD.

Innate Lymphoid Cells
Innate lymphoid cells (ILCs) produce Th cell–associated cyto-
kines but do not express cell-surface markers that are associ-
ated with other immune cell lineages. Moreover, ILCs are 
lineage marker negative and do not express a T cell receptor. 
Thus, their immune response is not antigen specific. ILCs are 
effectors of innate immunity and regulators of tissue model-
ing. These recently identified cells have several subpopula-
tions with distinct cytokine expression patterns that resemble 
the helper T cell subsets Th1, Th2, and Th17.

Group I ILCs include ILC1 cells and NK cells. ILC1 cells 
express the transcription factor T-bet and respond to IL-12 by 
producing IFN-γ. They differ from NK cells in that they do not 
express the NK cell markers CD16 and CD94 and lack perforin 
and granzyme B. ILC1 may develop from the RORχt ILC3 
cells. Thus, it is still unclear whether they are a distinct group 
or a stage in the differentiation of ILC3 or NK cells.250 ILC1 
cells are increased in the inflamed intestine of Crohn’s disease 
patients, suggesting a role for ILC1 cells in the pathogenesis 
of intestinal inflammation.

Group 2 ILCs include ILC2 cells (also termed natural helper 
cells, nuocytes, and innate helper 2). Their transcription factors 
are retinoic acid receptor-related orphan receptor-α (RORα) 
and GATA3, and they have key roles in anthelminthic 
responses and allergic lung inflammation.

Group 3 ILCs include ILC3 and lymphoid tissue inducer 
(LTi) cells. This group expresses the NK cell-activating recep-
tor NKp46, depends on the transcription factor RORχt, and 
lacks cytotoxic effectors like perforin and granzymes. Group 
3 ILCs express IL-22 but not IFN-γ or TNF. ILCs were recently 
identified in humans. Their potential contribution to mucosal 
homeostasis and intestinal inflammation is still unclear and 
under intensive research.251

Dendritic Cells
DCs play an important role in tolerance and immunity in the 
gut. DCs continuously migrate within lymphoid tissues and 
present self-antigens (likely from dying apoptotic cells to 
maintain self-tolerance) as well as non-self antigens.252 Within 
the LP of the distal small intestine, they express the chemokine 



26    Section I  Biology of the Gastrointestinal Tract

CXCL12 (stromal cell derived factor-1) and its main recep-
tor CXCR4 are expressed by IECs in the normal intestinal 
mucosa,295-297 where they have a role in IEC migration, barrier 
maturation, and restitution.298 Up-regulation of CXCL12 in 
IBD IECs was recently reported, as was CXCR4 expression by 
IECs, peripheral blood, and LP mononuclear cells.299 More-
over, CXCL12 was able to chemoattract Th1-biased memory 
CD45RO+ peripheral blood and LP T cells,300 and CXCR4-
mediated IgG plasma cell infiltration of the mucosa of ulcer-
ative colitis patients was recently demonstrated,301 suggesting 
that CXCL12-CXCR4 interactions contribute to mucosal 
deregulation, specifically of memory CD45RO+ LP T cells and 
plasma cells. CXCR4 antagonists were evaluated as a thera-
peutic modality in animal colitis models and human disease, 
with preliminary beneficial effects.302,303 The potential role of 
the newly reported CXCL12 receptor CXCR7 in IBD is still 
unclear.300
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differentially expressed in the jejunal and ileal epithelium, 
where decreasing levels of expression from the crypt up to the 
villous have been reported.282 In murine models it was shown 
that CCL25/CCR9 is associated with selective localization  
of mesenteric lymph node–activated CD8αβ+ lymphocytes, 
co-expressing αEβ7 to the small intestine.283 CCL25 expression 
by IECs has been shown to be increased in the inflamed small 
bowel of patients with Crohn’s disease, with increased CCR9 
expression by peripheral blood lymphocytes and decreased 
expression by LPLs,280 supporting its role in the specific attrac-
tion of peripheral lymphocytes to the small bowel in Crohn’s 
disease. This chemokine-receptor pair has also been used as a 
target for therapeutic intervention in Crohn’s disease using a 
specific orally administered CCR9 antagonist, with positive 
results specifically in the maintenance phase.284

Fractalkine (CX3CL1) is a unique chemokine expressed by 
IECs that combines the properties of chemokines and adhe-
sion molecules. It attracts NK cells, monocytes, CD8+ T lym-
phocytes, and to a lesser extent CD4+ T lymphocytes, which 
express the specific receptor CX3CR1.285 Its expression is 
increased in Crohn’s disease, specifically in the basolateral 
aspect of IECs.286,287 It was suggested that polymorphism of the 
receptor CX3CR1 influences Crohn’s disease phenotype and 
localization, because it was associated with more stenosis and 
ileocolonic disease location.287

Mucosa-associated epithelial chemokine (MEC, CCL28) 
may also have a role in intestinal immunity. This chemokine 
and its receptors CCR3 and CCR10 are expressed by colonic 
IECs. CD4+ memory lymphocytes and eosinophils are attracted 
by this chemokine in vitro, although its function in vivo has 
not yet been demonstrated.288

Macrophage-derived chemokine (MDC, CCL22) is consti-
tutively expressed and secreted by colonic IECs. It is unique 
in that it attracts CCR4+ Th2 cytokine-producing lymphocytes. 
Polarized basolateral secretion of MDC/CCL22 from stimu-
lated colonic IEC lines has been reported.289 The specific 
recruitment of lymphocytes that preferentially secrete anti-
inflammatory cytokines supports a role for the intestinal epi-
thelium in orchestrating normal mucosal homeostasis, and 
adds to the accumulating evidence that these cells possess the 
ability to regulate mucosal immune responses.

The chemokine macrophage inflammatory protein-3α 
(MIP3α, CCL20) is unique in its ability to specifically attract 
immature DCs as well as memory CD4+ T lymphocytes.290-292 
CCL20 is also expressed and produced by human small intes-
tinal ECs (mainly in the follicle-associated epithelium) and by 
colonic IECs and has been suggested to be the mediator of 
lymphocyte adhesion to the α4β7 ligand MAdCAM-1.290 
MIP3α expression and secretion is increased in colonic IECs 
derived from IBD patients.293 Its stimulated secretion is polar-
ized to the basolateral compartment, supporting its ability to 
attract immune cells into the LP. Mucosal memory T cells, as 
well as IECs, express CCR6, the cognate receptor for MIP3α. 
The interesting observation that CCR6 as well as CCR9 are 
co-expressed in T cells expressing the α4β7 integrin, charac-
teristic of mucosal lymphocytes, may suggest that in inflam-
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and TECK (CCL20 and CCL25, respectively) expression by 
IECs attract CCR9+ or CCR6+ lymphocytes. These are activated 
in mesenteric lymph nodes, enter the peripheral blood, and 
then are recruited to the intestinal mucosa, where they undergo 
either activation-induced apoptosis (if they are aberrantly acti-
vated) or terminal differentiation. Interestingly, NKG2D+ CD4 
T cells from patients with Crohn’s disease expressed CCR6, 
rendering them potentially more responsive to CCL20, as well 
as to IL23, thus potentially contributing to further intestinal 
inflammation.294
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